ROAD TUNNEL VENTILATION

GENERAL

CONTENT

Traffic Development
 Tunnel Ventilation Types
 Design Calculation
 Summary

1. Traffic Development

How Traffic/ Infrastructure develops?

Benefits of Tunnels: \bullet Less space (tunnel \Leftrightarrow ring road) Direct connections for mountains, rivers / bays, • urban / nature areas \rightarrow more competitive ("time is money") Less Noise More feasible (today's better know-how) → Tunnels will increase

2. Tunnel **Types**

Common Profiles

Vault blasted rock Round drilled (soft ground) Square enclosure

Tunnel Ventilation Types (VDI 6029)

1. Longitudinal

3. Transverse

- ⊕ cheap
- toxic concentration increases
- in fire case smoke extracted towards the tunnel portal

- ⊖ expensive
- toxic concentration
 nearly held constant
- in fire case smoke extracted towards the tunnel portal

- ⊖ very expensive
- toxic concentration held constant
- → in fire case smoke
 → exhaust not controllable

4. Combined Longitudinal Ventilation with Spot Extraction (Elbtunnel design by WITT & SOHN)

Cross-section with jet fans

Cross-section with dampers

Longitudinal section

- ⊖ expensive
- toxic concentration held constant
- in fire case smoke is been extracted at spot of fire

IGW Ventilatoren 3. Design Calculation

Tunnel Design Procedure:

- a) Determination of Volume Flow
 - Normal/ Congestion Case (\rightarrow PIARC)
 - Fire Case (\rightarrow Fire Size + FROUD)
 - → Maximum Air Speed
- b) Determination of Total Tunnel
 - Pressure Drop and
 - Thrust

c) Determination of Jet Fan Thrust and Quantity

a) Volume Flow acc. to PIARC

(Permanent International Association of Road Congresses)

$$Q_{\text{PIARC, required}} = \frac{M \cdot L}{V} \cdot q(v, i, h, t) \cdot \frac{1}{C_{\text{adm}} - C_{\text{amb}}}$$

- M := traffic flow
- L := length of tunnel
- V := speed of cars
- $q \rightarrow$ please refer to various tables in PIARC, e.g.
 - traffic load and composition
 - toxic gas emission of PCU (Diesel/ Petrol) and HDV,
 - factors for aging, tunnel gradient, cold starts, etc.

C_{adm} := admissible concentration of toxic gases

C_{amb} := ambient concentration of toxic gases

PIARC (sample tables)

Table 2.2		Average peak traffic density (pcu/km) or traffic flow (pcu/h) per lane				
		RURAL TUNNEL				
		uni-directional traffic		bi-directional traffic		
	V [km/h]	pcu/km	pcu/h	pcu/km	pcu/h	
fluid traffic congested traffic stoppage	60 10 0	30 70 150	1 800 700 0	23 60 150	1 400 600 0	
		URBAN TRAFFIC				
	uni-directional traffic		ctional traffic	bi-directional traffic		
	V [km/h]	pcu/km	pcu/h	pcu/km	pcu/h	
fluid traffic congested traffic stoppage	60 10 0	33 100 165	2 000 1 000 -	25 85 165	1 500 850	

table 1:

Passenger Car Units per lane, km and hour

	CO-concentration		Visibility		
I rallic situation	Design year dimensionnement		Extinction	Transmission s	
	1995	2010	coenicientit	(beam length: 100 m)	
	ppm	ppm	10-3 . m '	0.0	
Fluid peak traffic 50 - 100 km/h	100	70	5	60	
Daily congested traffic, standstill on all lanes	100	70	7	50	
Exceptional congested traffic, standstill on all lanes	150	100	9	40	
Planned maintenance work in a tunnel under traffic	30	20	3	75	
Closing of the tunnel	250	200	12	30	

table 2: concentration limits for CO, smoke and NO_x

a) Volume Flow acc. to FROUD

(dimensionless key number) Estimation based on:

- Fire Size
- Tunnel Geometrie
- FROUD Number
- → Max. required Volume Flow: PIARC ⇔ FROUD

b) Total Tunnel Pressure Drop + Thrust:

Kempf (survey values)

Background velocity

c) Jet Fan Thrust and Quantity

Test Rig: → T_{static} → Jet-Selection databased

Quantity of Jet Fans required :

IGW Ventilatoren 4. Summary

Tunnels increasing worldwide 4 Tunnel Ventilation Types (Longitudinal, (Semi-) Transverse, Elbtunnel) Calculation of \bullet required Tunnel Volume Flow \rightarrow PIARC Tunnel Pressure Drop and Total Tunnel Thrust Determination of required Quantity of Jets

Innovation in Fan Technology

