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Chapter 1

What is Condensed Matter

Physics?

1.1 Length, time, energy scales

We will be concerned with:

• ω, T � 1eV

• |xi − xj|, 1
q
� 1Å

as compared to energies in the MeV for nuclear matter, and GeV or even TeV , in

particle physics.

The properties of matter at these scales is determined by the behavior of collections

of many (∼ 1023) atoms.

In general, we will be concerned with scales much smaller than those at which

gravity becomes very important, which is the domain of astrophysics and cosmology.

1
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1.2 Microscopic Equations vs. States of Matter,

Phase Transitions, Critical Points

Systems containing many particles exhibit properties which are special to such sys-

tems. Many of these properties are fairly insensitive to the details at length scales

shorter than 1Å and energy scales higher than 1eV – which are quite adequately

described by the equations of non-relativistic quantum mechanics. Such properties

are emergent. For example, precisely the same microscopic equations of motion –

Newton’s equations – can describe two different systems of 1023 H2O molecules.

m
d2~xi
dt2

= −
∑
j 6=i

~∇iV (~xi − ~xj) (1.1)

Or, perhaps, the Schrödinger equation:− h̄2

2m

∑
i

∇2
i +

∑
i,j

V (~xi − ~xj)

 ψ (~x1, . . . , ~xN) = E ψ (~x1, . . . , ~xN) (1.2)

However, one of these systems might be water and the other ice, in which case the

properties of the two systems are completely different, and the similarity between

their microscopic descriptions is of no practical consequence. As this example shows,

many-particle systems exhibit various phases – such as ice and water – which are

not, for the most part, usefully described by the microscopic equations. Instead, new

low-energy, long-wavelength physics emerges as a result of the interactions among

large numbers of particles. Different phases are separated by phase transitions, at

which the low-energy, long-wavelength description becomes non-analytic and exhibits

singularities. In the above example, this occurs at the freezing point of water, where

its entropy jumps discontinuously.
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1.3 Broken Symmetries

As we will see, different phases of matter are distinguished on the basis of symmetry.

The microscopic equations are often highly symmetrical – for instance, Newton’s

laws are translationally and rotationally invariant – but a given phase may exhibit

much less symmetry. Water exhibits the full translational and rotational symmetry of

of Newton’s laws; ice, however, is only invariant under the discrete translational and

rotational group of its crystalline lattice. We say that the translational and rotational

symmetries of the microscopic equations have been spontaneously broken.

1.4 Experimental probes: X-ray scattering, neu-

tron scattering, NMR, thermodynamic, trans-

port

There are various experimental probes which can allow an experimentalist to deter-

mine in what phase a system is and to determine its quantitative properties:

• Scattering: send neutrons or X-rays into the system with prescribed energy,

momentum and measure the energy, momentum of the outgoing neutrons or

X-rays.

• NMR: apply a static magnetic field, B, and measure the absorption and emission

by the system of magnetic radiation at frequencies of the order of ωc = geB/m.

Essentially the scattering of magnetic radiation at low frequency by a system

in a uniform B field.

• Thermodynamics: measure the response of macroscopic variables such as the

energy and volume to variations of the temperature, pressure, etc.
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• Transport: set up a potential or thermal gradient, ∇ϕ, ∇T and measure the

electrical or heat current ~j, ~jQ. The gradients ∇ϕ, ∇T can be held constant or

made to oscillate at finite frequency.

1.5 The Solid State: metals, insulators, magnets,

superconductors

In the solid state, translational and rotational symmetries are broken by the arrange-

ment of the positive ions. It is precisely as a result of these broken symmetries that

solids are solid, i.e. that they are rigid. It is energetically favorable to break the

symmetry in the same way in different parts of the system. Hence, the system resists

attempts to create regions where the residual translational and rotational symmetry

groups are different from those in the bulk of the system. The broken symmetry can

be detected using X-ray or neutron scattering: the X-rays or neutrons are scattered

by the ions; if the ions form a lattice, the X-rays or neutrons are scattered coherently,

forming a diffraction pattern with peaks. In a crystalline solid, discrete subgroups of

the translational and rotational groups are preserved. For instance, in a cubic lattice,

rotations by π/2 about any of the crystal axes are symmetries of the lattice (as well

as all rotations generated by products of these). Translations by one lattice spacing

along a crystal axis generate the discrete group of translations.

In this course, we will be focussing on crystalline solids. Some examples of non-

crystalline solids, such as plastics and glasses will be discussed below. Crystalline

solids fall into three general categories: metals, insulators, and superconductors. In

addition, all three of these phases can be further subdivided into various magnetic

phases. Metals are characterized by a non-zero conductivity at T = 0. Insulators

have vanishing conductivity at T = 0. Superconductors have infinite conductivity for
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T < Tc and, furthermore, exhibit the Meissner effect: they expel magnetic fields.

In a magnetic material, the electron spins can order, thereby breaking the spin-

rotational invariance. In a ferromagnet, all of the spins line up in the same direction,

thereby breaking the spin-rotational invariance to the subgroup of rotations about this

direction while preserving the discrete translational symmetry of the lattice. (This

can occur in a metal, an insulator, or a superconductor.) In an antiferromagnet,

neighboring spins are oppositely directed, thereby breaking spin-rotational invariance

to the subgroup of rotations about the preferred direction and breaking the lattice

translational symmetry to the subgroup of translations by an even number of lattice

sites.

Recently, new states of matter – the fractional quantum Hall states – have been

discovered in effectively two-dimensional systems in a strong magnetic field at very

low T . Tomorrow’s experiments will undoubtedly uncover new phases of matter.

1.6 Other phases: liquid crystals, quasicrystals,

polymers, glasses

The liquid – with full translational and rotational symmetry – and the solid – which

only preserves a discrete subgroup – are but two examples of possible realizations

of translational symmetry. In a liquid crystalline phase, translational and rotational

symmetry is broken to a combination of discrete and continuous subgroups. For

instance, a nematic liquid crystal is made up of elementary units which are line seg-

ments. In the nematic phase, these line segments point, on average, in the same

direction, but their positional distribution is as in a liquid. Hence, a nematic phase

breaks rotational invariance to the subgroup of rotations about the preferred direction

and preserves the full translational invariance. Nematics are used in LCD displays.
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In a smectic phase, on the other hand, the line segments arrange themselves into

layers, thereby partially breaking the translational symmetry so that discrete transla-

tions perpendicular to the layers and continuous translations along the layers remain

unbroken. In the smectic-A phase, the preferred orientational direction is the same

as the direction perpendicular to the layers; in the smectic-C phase, these directions

are different. In a hexatic phase, a two-dimensional system has broken orientational

order, but unbroken translational order; locally, it looks like a triangular lattice. A

quasicrystal has rotational symmetry which is broken to a 5-fold discrete subgroup.

Translational order is completely broken (locally, it has discrete translational order).

Polymers are extremely long molecules. They can exist in solution or a chemical re-

action can take place which cross-links them, thereby forming a gel. A glass is a rigid,

‘random’ arrangement of atoms. Glasses are somewhat like ‘snapshots’ of liquids, and

are probably non-equilibrium phases, in a sense.



Chapter 2

Review of Quantum Mechanics

2.1 States and Operators

A quantum mechanical system is defined by a Hilbert space, H, whose vectors,
∣∣∣ψ〉

are associated with the states of the system. A state of the system is represented by

the set of vectors eiα
∣∣∣ψ〉. There are linear operators, Oi which act on this Hilbert

space. These operators correspond to physical observables. Finally, there is an inner

product, which assigns a complex number,
〈
χ
∣∣∣ψ〉, to any pair of states,

∣∣∣ψ〉,
∣∣∣χ〉. A

state vector,
∣∣∣ψ〉 gives a complete description of a system through the expectation

values,
〈
ψ
∣∣∣Oi∣∣∣ψ〉 (assuming that

∣∣∣ψ〉 is normalized so that
〈
ψ
∣∣∣ψ〉 = 1), which would

be the average values of the corresponding physical observables if we could measure

them on an infinite collection of identical systems each in the state
∣∣∣ψ〉.

The adjoint, O†, of an operator is defined according to

〈
χ
∣∣∣ (O∣∣∣ψ〉) =

(〈
χ
∣∣∣O†) ∣∣∣ψ〉 (2.1)

In other words, the inner product between
∣∣∣χ〉 and O

∣∣∣ψ〉 is the same as that between

O†
∣∣∣χ〉 and

∣∣∣ψ〉. An Hermitian operator satisfies

O = O† (2.2)

7
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while a unitary operator satisfies

OO† = O†O = 1 (2.3)

If O is Hermitian, then

eiO (2.4)

is unitary. Given an Hermitian operator, O, its eigenstates are orthogonal,

〈
λ′
∣∣∣O∣∣∣λ〉 = λ

〈
λ′
∣∣∣λ〉 = λ′

〈
λ′
∣∣∣λ〉 (2.5)

For λ 6= λ′, 〈
λ′
∣∣∣λ〉 = 0 (2.6)

If there are n states with the same eigenvalue, then, within the subspace spanned by

these states, we can pick a set of n mutually orthogonal states. Hence, we can use

the eigenstates
∣∣∣λ〉 as a basis for Hilbert space. Any state

∣∣∣ψ〉 can be expanded in

the basis given by the eigenstates of O:

∣∣∣ψ〉 =
∑
λ

cλ
∣∣∣λ〉 (2.7)

with

cλ =
〈
λ
∣∣∣ψ〉 (2.8)

A particularly important operator is the Hamiltonian, or the total energy, which

we will denote by H. Schrödinger’s equation tells us that H determines how a state

of the system will evolve in time.

ih̄
∂

∂t

∣∣∣ψ〉 = H
∣∣∣ψ〉 (2.9)

If the Hamiltonian is independent of time, then we can define energy eigenstates,

H
∣∣∣E〉 = E

∣∣∣E〉 (2.10)
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which evolve in time according to:

∣∣∣E(t)
〉

= e−i
Et
h̄

∣∣∣E(0)
〉

(2.11)

An arbitrary state can be expanded in the basis of energy eigenstates:

∣∣∣ψ〉 =
∑
i

ci
∣∣∣Ei〉 (2.12)

It will evolve according to:

∣∣∣ψ(t)
〉

=
∑
j

cje
−i

Ejt

h̄

∣∣∣Ej〉 (2.13)

For example, consider a particle in 1D. The Hilbert space consists of all continuous

complex-valued functions, ψ(x). The position operator, x̂, and momentum operator,

p̂ are defined by:

x̂ · ψ(x) ≡ xψ(x)

p̂ · ψ(x) ≡ −ih̄ ∂
∂x

ψ(x) (2.14)

The position eigenfunctions,

x δ(x− a) = a δ(x− a) (2.15)

are Dirac delta functions, which are not continuous functions, but can be defined as

the limit of continuous functions:

δ(x) = lim
a→0

1

a
√
π
e−

x2

a2 (2.16)

The momentum eigenfunctions are plane waves:

−ih̄ ∂
∂x

eikx = h̄k eikx (2.17)

Expanding a state in the basis of momentum eigenstates is the same as taking its

Fourier transform:

ψ(x) =
∫ ∞
−∞

dk ψ̃(k)
1√
2π
eikx (2.18)
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where the Fourier coefficients are given by:

ψ̃(k) =
1√
2π

∫ ∞
−∞

dxψ(x) e−ikx (2.19)

If the particle is free,

H = − h̄2

2m

∂2

∂x2
(2.20)

then momentum eigenstates are also energy eigenstates:

Ĥeikx =
h̄2k2

2m
eikx (2.21)

If a particle is in a Gaussian wavepacket at the origin at time t = 0,

ψ(x, 0) =
1

a
√
π
e−

x2

a2 (2.22)

Then, at time t, it will be in the state:

ψ(x, t) =
1√
2π

∫ ∞
−∞

dk
a√
π
e−i

h̄k2t
2m e−

1
2
k2a2

eikx (2.23)

2.2 Density and Current

Multiplying the free-particle Schrödinger equation by ψ∗,

ψ∗ ih̄
∂

∂t
ψ = − h̄2

2m
ψ∗

∂2

∇2
ψ (2.24)

and subtracting the complex conjugate of this equation, we find

∂

∂t
(ψ∗ψ) =

ih̄

2m
~∇ ·

(
ψ∗~∇ψ −

(
~∇ψ∗

)
ψ
)

(2.25)

This is in the form of a continuity equation,

∂ρ

∂t
= ~∇ ·~j (2.26)

The density and current are given by:

ρ = ψ∗ψ
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~j =
ih̄

2m

(
ψ∗~∇ψ −

(
~∇ψ∗

)
ψ
)

(2.27)

The current carried by a plane-wave state is:

~j =
h̄

2m
~k

1

(2π)3
(2.28)

2.3 δ-function scatterer

H = − h̄2

2m

∂2

∂x2
+ V δ(x) (2.29)

ψ(x) =

 eikx +Re−ikx if x < 0

Teikx if x > 0
(2.30)

T =
1

1− mV
h̄2k

i

R =
mV
h̄2k

i

1− mV
h̄2k

i
(2.31)

There is a bound state at:

ik =
mV

h̄2 (2.32)

2.4 Particle in a Box

Particle in a 1D region of length L:

H = − h̄2

2m

∂2

∂x2
(2.33)

ψ(x) = Aeikx +Be−ikx (2.34)

has energy E = h̄2k2/2m. ψ(0) = ψ(L) = 0. Therefore,

ψ(x) = A sin
(
nπ

L
x
)

(2.35)



Chapter 2: Review of Quantum Mechanics 12

for integer n. Allowed energies

En =
h̄2π2n2

2mL2
(2.36)

In a 3D box of side L, the energy eigenfunctions are:

ψ(x) = A sin
(
nxπ

L
x
)

sin
(
nyπ

L
y
)

sin
(
nzπ

L
z
)

(2.37)

and the allowed energies are:

En =
h̄2π2

2mL2

(
n2
x + n2

y + n2
z

)
(2.38)

2.5 Harmonic Oscillator

H = − h̄2

2m

∂2

∂x2
+

1

2
kx2 (2.39)

Writing ω =
√
k/m, p̃ = p/(km)1/4, x̃ = x(km)1/4,

H =
1

2
ω
(
p̃2 + x̃2

)
(2.40)

[p̃, x̃] = −ih̄ (2.41)

Raising and lowering operators:

a = (x̃+ ip̃) /
√

2h̄

a† = (x̃− ip̃) /
√

2h̄

(2.42)

Hamiltonian and commutation relations:

H = h̄ω
(
a†a+

1

2

)
[a, a†] = 1 (2.43)

The commutation relations,

[H, a†] = h̄ωa†



Chapter 2: Review of Quantum Mechanics 13

[H, a] = −h̄ωa (2.44)

imply that there is a ladder of states,

Ha†|E〉 = (E + h̄ω) a†|E〉

Ha|E〉 = (E − h̄ω) a|E〉 (2.45)

This ladder will continue down to negative energies (which it can’t since the Hamil-

tonian is manifestly positive definite) unless there is an E0 ≥ 0 such that

a|E0〉 = 0 (2.46)

Such a state has E0 = h̄ω/2.

We label the states by their a†a eigenvalues. We have a complete set of H eigen-

states, |n〉, such that

H|n〉 = h̄ω
(
n+

1

2

)
|n〉 (2.47)

and (a†)n|0〉 ∝ |n〉. To get the normalization, we write a†|n〉 = cn|n+ 1〉. Then,

|cn|2 = 〈n|aa†|n〉

= n+ 1 (2.48)

Hence,

a†|n〉 =
√
n+ 1|n+ 1〉

a|n〉 =
√
n|n− 1〉 (2.49)

2.6 Double Well

H = − h̄2

2m

∂2

∂x2
+ V (x) (2.50)
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where

V (x) =


∞ if |x| > 2a+ 2b

0 if b < |x| < a+ b

V0 if |x| < b

Symmetrical solutions:

ψ(x) =

 A cos k′x if |x| < b

cos(k|x| − φ) if b < |x| < a+ b
(2.51)

with

k′ =

√
k2 − 2mV0

h̄2 (2.52)

The allowed k’s are determined by the condition that ψ(a+ b) = 0:

φ =
(
n+

1

2

)
π − k(a+ b) (2.53)

the continuity of ψ(x) at |x| = b:

A =
cos (kb− φ)

cos k′b
(2.54)

and the continuity of ψ′(x) at |x| = b:

k tan
((
n+

1

2

)
π − ka

)
= k′ tan k′b (2.55)

If k′ is imaginary, cos→ cosh and tan→ i tanh in the above equations.

Antisymmetrical solutions:

ψ(x) =

 A sin k′x if |x| < b

sgn(x) cos(k|x| − φ) if b < |x| < a+ b
(2.56)

The allowed k’s are now determined by

φ =
(
n+

1

2

)
π − k(a+ b) (2.57)

A =
cos (kb− φ)

sin k′b
(2.58)
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k tan
((
n+

1

2

)
π − ka

)
= − k′ cot k′b (2.59)

Suppose we have n wells? Sequences of eigenstates, classified according to their

eigenvalues under translations between the wells.

2.7 Spin

The electron carries spin-1/2. The spin is described by a state in the Hilbert space:

α|+〉 + β|−〉 (2.60)

spanned by the basis vectors |±〉. Spin operators:

sx =
1

2

 0 1

1 0


sy =

1

2

 0 − i

i 0


sz =

1

2

 1 0

0 − 1

 (2.61)

Coupling to an external magnetic field:

Hint = −gµB~s · ~B (2.62)

States of a spin in a magnetic field in the ẑ direction:

H|+〉 = −g
2
µB |+〉

H|−〉 =
g

2
µB |−〉 (2.63)

2.8 Many-Particle Hilbert Spaces: Bosons, Fermions

When we have a system with many particles, we must now specify the states of all

of the particles. If we have two distinguishable particles whose Hilbert spaces are
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spanned by the bases ∣∣∣i, 1〉 (2.64)

and ∣∣∣α, 2〉 (2.65)

Then the two-particle Hilbert space is spanned by the set:

∣∣∣i, 1;α, 2
〉
≡
∣∣∣i, 1〉⊗ ∣∣∣α, 2〉 (2.66)

Suppose that the two single-particle Hilbert spaces are identical, e.g. the two particles

are in the same box. Then the two-particle Hilbert space is:

∣∣∣i, j〉 ≡ ∣∣∣i, 1〉⊗ ∣∣∣j, 2〉 (2.67)

If the particles are identical, however, we must be more careful.
∣∣∣i, j〉 and

∣∣∣j, i〉 must

be physically the same state, i.e.

∣∣∣i, j〉 = eiα
∣∣∣j, i〉 (2.68)

Applying this relation twice implies that

∣∣∣i, j〉 = e2iα
∣∣∣i, j〉 (2.69)

so eiα = ±1. The former corresponds to bosons, while the latter corresponds to

fermions. The two-particle Hilbert spaces of bosons and fermions are respectively

spanned by: ∣∣∣i, j〉+
∣∣∣j, i〉 (2.70)

and ∣∣∣i, j〉− ∣∣∣j, i〉 (2.71)

The n-particle Hilbert spaces of bosons and fermions are respectively spanned by:

∑
π

∣∣∣iπ(1), . . . , iπ(n)

〉
(2.72)
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and ∑
π

(−1)π
∣∣∣iπ(1), . . . , iπ(n)

〉
(2.73)

In position space, this means that a bosonic wavefunction must be completely sym-

metric:

ψ(x1, . . . , xi, . . . , xj, . . . , xn) = ψ(x1, . . . , xj, . . . , xi, . . . , xn) (2.74)

while a fermionic wavefunction must be completely antisymmetric:

ψ(x1, . . . , xi, . . . , xj, . . . , xn) = −ψ(x1, . . . , xj, . . . , xi, . . . , xn) (2.75)



Chapter 3

Review of Statistical Mechanics

3.1 Microcanonical, Canonical, Grand Canonical

Ensembles

In statistical mechanics, we deal with a situation in which even the quantum state

of the system is unknown. The expectation value of an observable must be averaged

over:

〈O〉 =
∑
i

wi 〈i |O| i〉 (3.1)

where the states |i〉 form an orthonormal basis of H and wi is the probability of being

in state |i〉. The wi’s must satisfy
∑
wi = 1. The expectation value can be written in

a basis-independent form:

〈O〉 = Tr {ρO} (3.2)

where ρ is the density matrix. In the above example, ρ =
∑
iwi|i〉〈i|. The condition,∑

wi = 1, i.e. that the probabilities add to 1, is:

Tr {ρ} = 1 (3.3)

We usually deal with one of three ensembles: the microcanonical emsemble, the

canonical ensemble, or the grand canonical ensemble. In the microcanonical ensemble,

18
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we assume that our system is isolated, so the energy is fixed to be E, but all states

with energy E are taken with equal probability:

ρ = C δ(H − E) (3.4)

C is a normalization constant which is determined by (3.3). The entropy is given by,

S = − lnC (3.5)

In other words,

S(E) = ln
(

# of states with energy E
)

(3.6)

Inverse temperature, β = 1/(kBT ):

β ≡
(
∂S

∂E

)
V

(3.7)

Pressure, P :
P

kBT
≡
(
∂S

∂V

)
E

(3.8)

where V is the volume.

First law of thermodynamics:

dS =
∂S

∂E
dE +

∂S

∂V
dV (3.9)

dE = kBT dS − P dV (3.10)

Free energy:

F = E − kBTS (3.11)

Differential relation:

dF = −kBS dT − P dV (3.12)

or,

S = − 1

kB

(
∂F

∂T

)
V

(3.13)
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P = −
(
∂F

∂V

)
T

(3.14)

while

E = F + kBTS

= F − T
(
∂F

∂T

)
V

= −T 2 ∂

∂T

F

T
(3.15)

In the canonical ensemble, we assume that our system is in contact with a heat

reservoir so that the temperature is constant. Then,

ρ = C e−βH (3.16)

It is useful to drop the normalization constant, C, and work with an unnormalized

density matrix so that we can define the partition function:

Z = Tr {ρ} (3.17)

or,

Z =
∑
a

e−βEa (3.18)

The average energy is:

E =
1

Z

∑
a

Ea e
−βEa

= − ∂

∂β
lnZ

= − kB T 2 ∂

∂T
lnZ (3.19)

Hence,

F = −kBT lnZ (3.20)

The chemical potential, µ, is defined by

µ =
∂F

∂N
(3.21)
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where N is the particle number.

In the grand canonical ensemble, the system is in contact with a reservoir of heat

and particles. Thus, the temperature and chemical potential are held fixed and

ρ = C e−β(H−µN) (3.22)

We can again work with an unnormalized density matrix and construct the grand

canonical partition function:

Z =
∑
N,a

e−β(Ea−µN) (3.23)

The average number is:

N = −kBT
∂

∂µ
lnZ (3.24)

while the average energy is:

E = − ∂

∂β
lnZ + µkBT

∂

∂µ
lnZ (3.25)

3.2 Bose-Einstein and Planck Distributions

3.2.1 Bose-Einstein Statistics

For a system of free bosons, the partition function

Z =
∑
Ea,N

e−β(Ea−µN) (3.26)

can be rewritten in terms of the single-particle eigenstates and the single-particle

energies εi:

Ea = n0 ε0 + n1 ε1 + . . . (3.27)

Z =
∑
{ni}

e−β(
∑

i
niεi−µ

∑
i
ni)

=
∏
i

(∑
ni

e−β(niεi−µni)
)
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=
∏
i

1

1− e−β(εi−µ)
(3.28)

〈ni〉 =
1

eβ(εi−µ) − 1
(3.29)

The chemical potential is chosen so that

N =
∑
i

〈ni〉

=
∑
i

1

eβ(εi−µ) − 1
(3.30)

The energy is given by

E =
∑
i

〈ni〉 εi

=
∑
i

εi
eβ(εi−µ) − 1

(3.31)

N is increased by increasing µ (µ ≤ 0 always). Bose-Einstein condensation occurs

when

N >
∑
i6=0

〈ni〉 (3.32)

In such a case, 〈n0〉 must become large. This occurs when µ = 0.

3.2.2 The Planck Distribution

Suppose N is not fixed, but is arbitrary, e.g. the numbers of photons and neutrinos

are not fixed. Then there is no Lagrange multiplier µ and

〈ni〉 =
1

eβεi − 1
(3.33)

Consider photons (two polarizations) in a cavity of side L with εk = h̄ωk = h̄ck and

k =
2π

L
(mx,my,mz) (3.34)

E = 2
∑

mx,my ,mz

ωmx,my ,mz
〈
nmx,my ,mz

〉
(3.35)
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We can take the thermodynamic limit, L → ∞, and convert the sum into an

integral. Since the allowed ~k’s are 2π
L

(mx,my,mz), the ~k-space volume per allowed ~k

is (2π)3/L3. Hence, we can take the infinite-volume limit by making the replacement:

∑
k

f(~k) =
1

(∆~k)3

∑
k

f(~k) (∆~k)3

=
L3

(2π)3

∫
d3~k f(~k) (3.36)

Hence,

E = 2V
∫ kmax

0

d3k

(2π)3

h̄ωk
eβh̄ωk − 1

= 2V
∫ kmax

0

d3k

(2π)3

h̄ck

eβh̄ck − 1

=
V k4

B

π2(h̄c)3
T 4
∫ βh̄ckmax

0

x3 dx

ex − 1
(3.37)

For βh̄ckmax � 1,

E =
V k4

B

π2(h̄c)3
T 4
∫ ∞

0

x3 dx

ex − 1
(3.38)

and

CV =
4V k4

B

π2(h̄c)3
T 3
∫ ∞

0

x3 dx

ex − 1
(3.39)

For βh̄ckmax � 1 ,

E =
V k3

max

3π2
kBT (3.40)

and

CV =
V k3

maxkB
3π2

(3.41)

3.3 Fermi-Dirac Distribution

For a system of free fermions, the partition function

Z =
∑
Ea,N

e−β(Ea−µN) (3.42)
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can again be rewritten in terms of the single-particle eigenstates and the single-particle

energies εi:

Ea = n0 ε0 + n1 ε1 + . . . (3.43)

but now

ni = 0, 1 (3.44)

so that

Z =
∑
{ni}

e−β(
∑

i
niεi−µ

∑
i
ni)

=
∏
i

 1∑
ni=0

e−β(niεi−µni)


=

∏
i

(
1 + e−β(εi−µ)

)
(3.45)

〈ni〉 =
1

eβ(εi+µ) + 1
(3.46)

The chemical potential is chosen so that

N =
∑
i

1

eβ(εi+µ) + 1
(3.47)

The energy is given by

E =
∑
i

εi
eβ(εi+µ) + 1

(3.48)

3.4 Thermodynamics of the Free Fermion Gas

Free electron gas in a box of side L:

εk =
h̄2k2

2m
(3.49)

with

k =
2π

L
(mx,my,mz) (3.50)
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Then, taking into account the 2 spin states,

E = 2
∑

mx,my ,mz

εmx,my ,mz
〈
nmx,my ,mz

〉

= 2V
∫ kmax

0

d3k

(2π)3

h̄2k2

2m

e
β

(
h̄2k2

2m
−µ
)

+ 1
(3.51)

N = 2V
∫ kmax

0

d3k

(2π)3

1

e
β

(
h̄2k2

2m
−µ
)

+ 1
(3.52)

At T = 0,
1

e
β

(
h̄2k2

2m
−µ
)

+ 1

= θ

(
µ− h̄2k2

2m

)
(3.53)

All states with energies less than µ are filled; all states with higher energies are empty.

We write

kF =

√
2mµT=0

h̄
, εF = µT=0 (3.54)

N

V
= 2

∫ kF

0

d3k

(2π)3
=

k3
F

3π2
(3.55)

E

V
= 2

∫ kF

0

d3k

(2π)3

h̄2k2

2m

=
1

π2

h̄2k5
F

10m

=
3

5

N

V
εF (3.56)

2
∫ d3k

(2π)3
=
m

3
2 2

1
2

π2h̄3

∫
dε ε

1
2 (3.57)

For kBT � eF ,

N

V
=

m
3
2 2

1
2

π2h̄3

∫ ∞
0
dε ε

1
2

1

eβ(ε−µ) + 1

=
m

3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

1
2 +

m
3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

1
2

(
1

eβ(ε−µ) + 1
− 1

)
+
m

3
2 2

1
2

π2h̄3

∫ ∞
µ
dε ε

1
2

1

eβ(ε−µ) + 1
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=
(2m)

3
2

3π2h̄3 µ
3
2 − m

3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

1
2

1

e−β(ε−µ) + 1
+
m

3
2 2

1
2

π2h̄3

∫ ∞
µ
dε ε

1
2

1

eβ(ε−µ) + 1

=
(2m)

3
2

3π2h̄3 µ
3
2 +

m
3
2 2

1
2

π2h̄3

∫ ∞
0

kBT dx

ex + 1

(
(µ+ kBTx)

1
2 − (µ− kBTx)

1
2

)
+O

(
e−βµ

)
=

(2m)
3
2

3π2h̄3 µ
3
2 +

(2m)
3
2

π2h̄3

∞∑
n=1

(kBT )2n

µ 3
2
−2n 1

(2n− 1)!

Γ
(

3
2

)
Γ
(

5
2
− 2n

)∫ ∞
0
dx

x2n−1

ex + 1


=

(2m)
3
2

3π2h̄3 µ
3
2

1 +
3

2

(
kBT

µ

)2

I1 +O
(
T 4
) (3.58)

with

Ik =
∫ ∞

0
dx

xk

ex + 1
(3.59)

We will only need

I1 =
π2

12
(3.60)

Hence,

(εF )
3
2 = µ

3
2

1 +
3

2

(
kBT

µ

)2

I1 +O
(
T 4
) (3.61)

To lowest order in T , this gives:

µ = εF

1−
(
kBT

εF

)2

I1 +O(T 4)


= εF

1− π2

12

(
kBT

εF

)2

+O(T 4)

 (3.62)

E

V
=

m
3
2 2

1
2

π2h̄3

∫ ∞
0
dε ε

3
2

1

eβ(ε−µ) + 1

=
m

3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

3
2 +

m
3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

3
2

(
1

eβ(ε−µ) + 1
− 1

)
+
m

3
2 2

1
2

π2h̄3

∫ ∞
µ
dε ε

3
2

1

eβ(ε−µ) + 1

=
(2m)

3
2

5π2h̄3 µ
5
2 − m

3
2 2

1
2

π2h̄3

∫ µ

0
dε ε

3
2

1

e−β(ε−µ) + 1
+
m

3
2 2

1
2

π2h̄3

∫ ∞
µ
dε ε

3
2

1

eβ(ε−µ) + 1

=
(2m)

3
2

5π2h̄3 µ
5
2 +

m
3
2 2

1
2

π2h̄3

∫ ∞
0

kBT dx

ex + 1

(
(µ+ kBTx)

3
2 − (µ− kBTx)

3
2

)
+O

(
e−βµ

)
=

(2m)
3
2

5π2h̄3 µ
5
2 +

(2m)
3
2

π2h̄3

∞∑
n=1

(kBT )2n

µ 5
2
−2n 1

(2n− 1)!

Γ
(

5
2

)
Γ
(

7
2
− 2n

)∫ ∞
0
dx

x2n−1

ex + 1


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=
(2m)

3
2

5π2h̄3 µ
5
2

1 +
15

2

(
kBT

µ

)2

I1 +O(T 4)


=

3

5

N

V
εF

1 +
5π2

12

(
kBT

εF

)2

+O(T 4)

 (3.63)

Hence, the specific heat of a gas of free fermions is:

CV =
π2

2
NkB

kBT

εF
(3.64)

Note that this can be written in the more general form:

CV = (const.) · kB · g (εF ) kBT (3.65)

The number of electrons which are thermally excited above the ground state is ∼

g (εF ) kBT ; each such electron contributes energy ∼ kBT and, hence, gives a specific

heat contribution of kB. Electrons give such a contribution to the specific heat of a

metal.

3.5 Ising Model, Mean Field Theory, Phases

Consider a model of spins on a lattice in a magnetic field:

H = −gµBB
∑
i

Szi ≡ 2h
∑
i

Szi (3.66)

with Szi = ±1/2. The partition function for such a system is:

Z =

(
2 cosh

h

kBT

)N
(3.67)

The average magnetization is:

Szi =
1

2
tanh

h

kBT
(3.68)

The susceptibility, χ, is defined by

χ =

(
∂

∂h

∑
i

Szi

)
h=0

(3.69)
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For free spins on a lattice,

χ =
1

2
N

1

kBT
(3.70)

A susceptibility which is inversely proportional to temperature is called a Curie suc-

septibility. In problem set 3, you will show that the susceptibility is much smaller for

a system of electrons.

Now consider a model of spins on a lattice such that each spin interacts with its

neighbors according to:

H = −1

2

∑
〈i,j〉

JSzi S
z
j (3.71)

This Hamiltonian has a symmetry

Szi → −Szi (3.72)

For kBT � J , the interaction between the spins will not be important and the

susceptibility will be of the Curie form. For kBT < J , however, the behavior will be

much different. We can understand this qualitatively using mean field theory.

Let us approximate the interaction of each spin with its neighbors by an interaction

with a mean-field, h:

H = −
∑
i

hSzi (3.73)

with h given by

h =
∑
i

J〈Szi 〉 = Jz〈Szi 〉 (3.74)

where z is the coordination number. In this field, the partition function is just

2 cosh h
kBT

and

〈Sz〉 = tanh
h

kBT
(3.75)

Using the self-consistency condition, this is:

〈Sz〉 = tanh
Jz〈Sz〉
kBT

(3.76)
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For kBT < Jz, this has non-zero solutions, Sz 6= 0 which break the symmetry

Szi → −Szi . In this phase, there is a spontaneous magnetization. For kBT > Jz,

there is only the solution Sz = 0. In this phase the symmetry is unbroken and the

is no spontaneous magnetization. At kBT = Jz, there is a critical point at which a

phase transition occurs.



Chapter 4

Broken Translational Invariance in

the Solid State

4.1 Simple Energetics of Solids

Why do solids form? The Hamiltonian of the electrons and ions is:

H =
∑
i

p2
i

2me

+
∑
a

P 2
a

2M
+
∑
i>j

e2

|ri − rj|
+
∑
a>b

Z2e2

|Ra −Rb|
−
∑
i,a

Ze2

|ri −Rb|
(4.1)

It is invariant under the symmetry, ~ri → ~ri + ~a, ~Ra → ~Ra + ~a. However, the energy

can usually be minimized by forming a crystal. At low enough temperature, this will

win out over any possible entropy gain in a competing state, so crystallization will

occur. Why is the crystalline state energetically favorable? This depends on the type

of crystal. Different types of crystals minimize different terms in the Hamiltonian.

In molecular and ionic crystals, the potential energy is minimized. In a molecular

crystal, such as solid nitrogen, there is a van der Waals attraction between molecules

caused by polarization of one by the other. The van der Waals attraction is balanced

by short-range repulsion, thereby leading to a crystalline ground state. In an ionic

crystal, such as NaCl, the electrostatic energy of the ions is minimized (one must

be careful to take into account charge neutrality, without which the electrostatic

30
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energy diverges). In covalent and metallic crystals, crystallization is driven by the

minimization of the electronic kinetic energy. In a metal, such as sodium, the kinetic

energy of the electrons is lowered by their ability to move throughout the metal. In

a covalent solid, such as diamond, the same is true. The kinetic energy gain is high

enough that such a bond can even occur between just two molecules (as in organic

chemistry). The energetic gain of a solid is called the cohesive energy.

4.2 Phonons: Linear Chain

4.3 Quantum Mechanics of a Linear Chain

As a toy model of a solid, let us consider a linear chain of masses m connected by

springs with spring constant B. Suppose that the equilibrium spacing between the

masses is a. The equilibrium positions define a 1D lattice. The lattice ‘vectors’, ~Rj,

are defined by:

~Rj = ja (4.2)

They connect the origin to all points of the lattice. If ~R and ~R′ are lattice vectors,

then ~R+ ~R′ are also lattice vectors. A set of basis vectors is a minimal set of vectors

which generate the full set of lattice vectors by taking linear combinations of the basis

vectors. In our 1D lattice, a is the basis vector.

Let ui be the displacement of the ith mass from its equilibrium position and let

pi be the corresponding momentum. Let us assume that there are N masses, and

let’s impose a periodic boundary condition, ui = ui+N . The Hamiltonian for such a

system is:

H =
1

2m

∑
i

p2
i +

1

2
B
∑
i

(ui − ui+1)2 (4.3)
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Let us use the Fourier transform representation:

uj =
1√
N

∑
k

uk e
ikja

pj =
1√
N

∑
k

pk e
ikja (4.4)

As a result of the periodic boundary condition, the allowed k’s are:

k =
2πn

Na
(4.5)

We can invert (4.4):

1√
N

∑
j

uje
ik′ja =

1

N

∑
k

∑
j

uk e
i(k−k′)ja

1√
N

∑
j

uje
ik′ja = uk′ (4.6)

Note that u†k = u−k, p†k = p−k since u†j = uj, p
†
j = pj. They satisfy the commutation

relations:

[pk, uk′ ] =
1

N

∑
j,j′
eikjaeik

′j′a [pj, uj′ ]

=
1

N

∑
j,j′
eikjaeik

′j′a − ih̄δjj′

= −ih̄ 1

N

∑
j

ei(k−k
′)ja

= −ih̄δkk′ (4.7)

Hence, pk and uk′ commute unless k = k′.

The displacements described by uk are the same as those described by uk+ 2πm
a

for

any integer n:

uk+ 2πm
a

=
1√
N

∑
j

uj e
−i(k+ 2πm

a )ja

=
1√
N

∑
j

uj e
−ikja

= uk (4.8)
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Hence,

k ≡ k +
2πm

a
(4.9)

Hence, we can restrict attention to n = 0, 1, . . . , N − 1 in (4.5). The Hamiltonian can

be rewritten:

H =
∑
k

1

2m
pkp−k + 2B

(
sin

ka

2

)2

uku−k (4.10)

Recalling the solution of the harmonic oscillator problem, we define:

ak =
1√
2h̄


4mB

(
sin

ka

2

)2
 1

4

uk +
i(

4mB
(
sin ka

2

)2
) 1

4

pk



a†k =
1√
2h̄


4mB

(
sin

ka

2

)2
 1

4

u−k −
i(

4mB
(
sin ka

2

)2
) 1

4

p−k

 (4.11)

(Recall that u†k = u−k, p
†
k = p−k.) which satisfy:

[ak, a
†
k] = 1 (4.12)

Then:

H =
∑
k

h̄ωk

(
a†kak +

1

2

)
(4.13)

with

ωk = 2
(
B

m

) 1
2

∣∣∣∣∣sin ka2
∣∣∣∣∣ (4.14)

Hence, the linear chain is equivalent to a system of N independent harmonic oscilla-

tors. Its thermodynamics can be described by the Planck distribution.

The operators a†k, ak are said to create and annihilate phonons. We say that a

state
∣∣∣ψ〉 with

a†kak
∣∣∣ψ〉 = Nk

∣∣∣ψ〉 (4.15)

has Nk phonons of momentum k. Phonons are the quanta of lattice vibrations,

analogous to photons, which are the quanta of oscillations of the electromagnetic

field.
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Observe that, as k → 0, ωk → 0:

ωk→0 =

(
Ba

m/a

) 1
2

k

=

(
Ba

ρ

) 1
2

k (4.16)

The physical reason for this is simple: an oscillation with k = 0 is a uniform transla-

tion of the linear chain, which costs no energy.

Note that the reason for this is that the Hamiltonian is invariant under translations

ui → ui + λ. However, the ground state is not: the masses are located at the points

xj = ja. Translational invariance has been spontaneously broken. Of course, it could

just as well be broken with xj = ja + λ and, for this reason, ωk → 0 as k → 0. An

oscillatory mode of this type is called a Goldstone mode.

Consider now the case in which the masses are not equivalent. Let the masses

alternate between m and M . As we will see, the phonon spectra will be more com-

plicated. Let a be the distance between one m and the next m. The Hamiltonian

is:

H =
∑
i

(
1

2m
p2

1,i +
1

2M
p2

2,i +
1

2
B (u1,i − u2,i)

2 +
1

2
B (u2,i − u1,i+1)2

)
(4.17)

The equations of motion are:

m
d2

dt2
u1,i = −B [(u1,i − u2,i)− (u2,i−1 − u1,i)]

M
d2

dt2
u2,i = −B [(u2,i − u1,i) + (u2,i − u1,i+1)] (4.18)

Going again to the Fourier representation, α = 1, 2

uα,j =
1√
N

∑
k

uα,k e
ikja (4.19)

Where the allowed k’s are:

k =
2π

N
n (4.20)



Chapter 4: Broken Translational Invariance in the Solid State 35

if there are 2N masses. As before,

uα,k = uα,k+ 2πn
a

(4.21)

 m d2

dt2
0

0 M d2

dt2


 u1,k

u2,k

 =

 2B −B
(
1 + eika

)
−B

(
1 + e−ika

)
2B


 u1,k

u2,k

 (4.22)

Fourier transforming in time: −mω2
k 0

0 −Mω2
k


 u1,k

u2,k

 =

 2B −B
(
1 + eika

)
−B

(
1 + e−ika

)
2B


 u1,k

u2,k

 (4.23)

This eigenvalue equation has the solutions:

ω2
± = B

 1

M
+

1

m
±

√√√√( 1

M
+

1

m

)2

− 4

nM

(
sin

ka

2

)2
 (4.24)

Observe that

ω−k→0 =

(
Ba

2(m+M)/a

) 1
2

k (4.25)

This is the acoustic branch of the phonon spectrum in which m and M move in phase.

As k → 0, this is a translation, so ω−k → 0. Acoustic phonons are responsible for

sound. Also note that

ω−k=π/a =
(

2B

M

) 1
2

(4.26)

Meanwhile, ω+ is the optical branch of the spectrum (these phonons scatter light), in

which m and M move in opposite directions.

ω+
k→0 =

√
2B

(
1

m
+

1

M

)
(4.27)

ω+
k=π/a =

(
2B

m

) 1
2

(4.28)

so there is a gap in the spectrum of width

ωgap =
(

2B

m

) 1
2

−
(

2B

M

) 1
2

(4.29)
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Note that if we take m = M , we recover the previous results, with a→ a/2.

This is an example of what is called a lattice with a basis. Not every site on the

chain is equivalent. We can think of the chain of 2N masses as a lattice with N sites.

Each lattice site has a two-site basis: one of these sites has a mass m and the other

has a mass M . Sodium Chloride is a simple subic lattice with a two-site basis: the

sodium ions are at the vertices of an FCC lattice and the chlorine ions are displaced

from them.

4.3.1 Statistical Mechnics of a Linear Chain

Let us return to the case of a linear chain of masses m separated by springs of force

constant B, at equilibrium distance a. The excitations of this system are phonons

which can have momenta k ∈ [−π/a, π/a] (since k ≡ k + 2πm
a

), corresponding to

energies

h̄ωk = 2
(
B

m

) 1
2

∣∣∣∣∣sin ka2
∣∣∣∣∣ (4.30)

Phonons are bosons whose number is not conserved, so they obey the Planck distri-

bution. Hence, the energy of a linear chain at finite temperature is given by:

E =
∑
k

h̄ωk
eβh̄ωk − 1

= L
∫ π

a

−π
a

dk

(2π)

h̄ωk
eβh̄ωk − 1

(4.31)

Changing variables from k to ω,

E = 2 · L
2π

∫ √4B/m

0

2

a

dω√
4B
m
− ω2

h̄ω

eβh̄ω − 1

=
2N

π

∫ √4B/m

0

dω√
4B
m
− ω2

h̄ω

eβh̄ω − 1

=
2N

π

(kBT )2

h̄

∫ βh̄
√

4B/m

0

1√
4B
m
−
(
x
βh̄

)2

x dx

ex − 1
(4.32)
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In the limit kBT � h̄
√

4B/m, we can take the upper limit of integration to ∞ and

drop the x-dependent term in the square root in the denominator of the integrand:

E =
N

π

√
m

4B

(kBT )2

h̄

∫ ∞
0

x dx

ex − 1
(4.33)

Hence, Cv ∼ T at low temperatures.

In the limit kBT � h̄
√

4B/m, we can approximate ex ≈ 1 + x:

E =
2N

π

(kBT )2

h̄

∫ βh̄
√

4B/m

0

dx√
4B
m
−
(
x
βh̄

)2

= NkB (4.34)

In the intermediate temperature regime, a more careful analysis is necessary. In

particular, note that the density of states, 1/
√

4B
m
− ω2 diverges at ω =

√
4B/m; this

is an example of a van Hove singularity. If we had alternating masses on springs,

then the expression for the energy would have two integrals, one over the acoustic

modes and one over the optical modes.

4.4 Lessons from the 1D chain

In the course of our analysis of the 1D chain, we developed the following strategy,

which we will apply to crystals more generally in subsequent sections.

• Expand the Hamiltonian to Quadratic Order

• Fourier transform the Hamiltonian into momentum space

• Identify the Brillouin zone (range of distinct ~ks)

• Rewrite the Hamiltonian in terms of creation and annihilation operators
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• Obtain the Spectrum

• Compute the Density of States

• Use the Planck distribution to obtain the thermodynamics of the vibrational

modes of the crystal.

4.5 Discrete Translational Invariance: the Recip-

rocal Lattice, Brillouin Zones, Crystal Momen-

tum

Note that, in the above, momenta were only defined up to 2πn
a

. The momenta 2πn
a

form a lattice in k-space, called the reciprocal lattice. This is true of any function

which, like the ionic discplacements, is a function defined at the lattice sites. For

such a function, f
(
~R
)
, defined on an arbitrary lattice, the Fourier transform

f̃
(
~k
)

=
∑
R

ei
~k·~Rf

(
~R
)

(4.35)

satisfies

f̃
(
~k
)

= f̃
(
~k + ~G

)
(4.36)

if ~G is in the set of reciprocal lattice vectors, defined by:

ei
~G·~R = 1 , for all ~R (4.37)

The reciprocal lattice vectors also form a lattice since the sum of two reciprocal lattice

vectors is also a reciprocal lattice vector. This lattice is called the reciprocal lattice

or dual lattice.

In the analysis of the linear chain, we restricted momenta to |k| < π/a to avoid

double-counting of degrees of freedom. This restricted region in k-space is an example
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of a Brillouin zone (or a first Brillouin zone). All of k-space can be obtained by

translating the Brillouin zone through all possible reciprocal lattice vectors. We

could have chosen our Brillouin zone differently by taking 0 < k < 2π/a. Physically,

there is no difference; the choice is a matter of convenience. What we need is a set of

points in k space such that no two of these points are connected by a reciprocal lattice

vector and such that all of k space can be obatained by translating the Brillouin zone

through all possible reciprocal lattice vectors. We could even choose a Brillouin zone

which is not connected, e.g. 0 < k < π/a. or 3π/a < k < 4π/a.

Later, we will consider solids with a more complicated lattice structure than our

linear chain. Once again, phonon spectra will be defined in the Brillouin zone. Since

f̃
(
~k
)

= f̃
(
~k + ~G

)
, the phonon modes outside of the Brillouin zone are not physically

distinct from those inside. One way of defining the Brillouin zone for an arbitrary

lattice is to take all points in k space which are closer to the origin than to any

other point of the reciprocal lattice. Such a choice of Brillouin zone is also called the

Wigner-Seitz cell of the reciprocal lattice. We will discuss this in some detail later

but, for now, let us consider the case of a cubic lattice. The lattice vectors of a cubic

lattice of side a are:

~Rn1,n2,n3 = a (n1x̂+ n2ŷ + n3ẑ) (4.38)

The reciprocal lattice vectors are:

~Gm1,m2,m3 =
2π

a
(m1x̂+m2ŷ +m3ẑ) (4.39)

The reciprocal lattice vectors also form a cubic lattice. The first Brillouin zone

(Wigner-Seitz cell of the reciprocal lattice) is given by the cube of side 2π
a

centered

at the origin. The volume of this cube is related to the density according to:∫
B.Z.

d3k

(2π)3
=

1

a3
=
Nions

V
(4.40)

As we have noted before, the ground state (and the Hamiltonian) of a crystal is in-

variant under the discrete group of translations through all lattice vectors. Whereas
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full translational invariance leads to momentum conservation, lattice translational

symmetry leads to the conservation of crystal momentum – momentum up to a re-

ciprocal lattice vector. (See Ashcroft and Mermin, appendix M.) For instance, in a

collision between phonons, the difference between the incoming and outgoing phonon

momenta can be any reciprocal lattice vector, G. Physically, one may think of the

missing momentum as being taken by the lattice as a whole. This concept will also

be important when we condsider the problem of electrons moving in the background

of a lattice of ions.

4.6 Phonons: Continuum Elastic Theory

Consider the lattice of ions in a solid. Suppose the equilibrium positions of the ions are

the sites ~Ri. Let us describe small displacements from these sites by a displacement

field ~u(~Ri). We will imagine that the crystal is just a system of masses connected by

springs of equilibrium length a.

Before considering the details of the possible lattice structures of 2D and 3D

crystals, let us consider the properties of a crystal at length scales which are much

larger than the lattice spacing; this regime should be insensitive to many details of

the lattice. At length scales much longer than its lattice spacing, a crystalline solid

can be modelled as an elastic medium. We replace ~u(~Ri) by ~u(~r) (i.e. we replace the

lattice vectors, ~Ri, by a continuous variable, ~r). Such an approximation is valid at

length scales much larger than the lattice spacing, a, or, equivalently, at wavevectors

q � 2π/a.

In 1D, we can take the continuum limit of our model of masses and springs:

H =
1

2
m
∑
i

(
dui
dt

)2

+
1

2
B
∑
i

(ui − ui+1)2

=
1

2

m

a

∑
i

a

(
dui
dt

)2

+
1

2
Ba

∑
i

a
(
ui − ui+1

a

)2
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→
∫
dx

1

2
ρ

(
du

dt

)2

+
1

2
B

(
du

dx

)2
 (4.41)

where ρ is the mass density and B is the bulk modulus. The equation of motion,

d2u

dt2
= B

d2u

dx2
(4.42)

has solutions

u(x, t) =
∑
k

uk e
i(kx−ωt) (4.43)

with

ω =

√√√√B

ρ
k (4.44)

The generalization to a 3D continuum elastic medium is:

ρ∂2
t ~u = (µ+ λ) ~∇

(
~∇ · ~u

)
+ µ∇2~u (4.45)

where ρ is the mass density of the solid and µ and λ are the Lamé coefficients. Under

a dilatation, ~u(~r) = α~r, the change in the energy density of the elastic medium is

α2(λ+ 2µ/3)/2; under a shear stress, ux = αy, uy = uz = 0, it is α2µ/2. In a crystal

– which has only a discrete rotational symmetry – there may be more parameters

than just µ and λ, depending on the symmetry of the lattice. In a crystal with cubic

symmetry, for instance, there are, in general, three independent parameters. We will

make life simple, however, and make the approximation of full rotational invariance.

The solutions are,

~u(~r, t) = ~ε ei(
~k·~r−ωt) (4.46)

where is ~ε a unit polarization vector, satisfy

−ρω2~ε = − (µ+ λ)~k
(
~k · ~ε

)
− µk2~ε (4.47)

For longitudinally polarized waves, ~k = k~ε,

ωlk = ±
√

2µ+ λ

ρ
k ≡ ±vlk (4.48)
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while transverse waves, ~k · ~ε = 0 have

ωtk = ±
√
µ

ρ
k ≡ ±vsk (4.49)

Above, we introduced the concept of the polarization of a phonon. In 3D, the

displacements of the ions can be in any direction. The two directions perpendicular

to ~k are called transverse. Displacements along ~k are called longitudinal.

The Hamiltonian of this system,

H =
∫
d3r

(
1

2
ρ
(
~̇u
)2

+
1

2
(µ+ λ)

(
~∇ · ~u

)2
− 1

2
µ~u · ∇2~u

)
(4.50)

can be rewritten in terms of creation and annihilation operators,

ak,s =
1√
2h̄

[
√
ρωk,s~εs · ~uk + i

√
ρ

ωk,s
~εs · ~̇uk

]

a†k,s =
1√
2h̄

[
√
ρωk,s~εs · ~u−k − i

√
ρ

ωk,s
~εs · ~̇u−k

]
(4.51)

as

H =
∑
k,s

h̄ωk,s

(
a†k,sak,s +

1

2

)
(4.52)

Inverting the above definitions, we can express the displacement ~u(r) in terms of

the creation and annihilation operators:

~u(~r) =
∑
k,s

√
h̄

2ρV ωsk
~εs
(
a~k,s + a†−~k,s

)
ei
~k·~r (4.53)

s = 1, 2, 3 corresponds to the longitudinal and two transverse polarizations. Acting

with ~uk either annihilates a phonon of momentum k or creates a phonon of momentum

−k.

The allowed ~k values are determined by the boundary conditions in a finite system.

For periodic boundary conditions in a cubic system of size V = L3, the allowed ~k’s

are 2π
L

(n1, n2, n3). Hence, the ~k-space volume per allowed ~k is (2π)3/V . Hence, we

can take the infinite-volume limit by making the replacement:

∑
k

f(~k) =
1

(∆~k)3

∑
k

f(~k) (∆~k)3
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=
V

(2π)3

∫
d3~k f(~k) (4.54)

4.7 Debye theory

Since a solid can be modelled as a collection of independent oscillators, we can obtain

the energy in thermal equilibrium using the Planck distribution function:

E = V
∑
s

∫
B.Z.

d3k

(2π)3

h̄ωs(k)

eβh̄ωs(k) − 1
(4.55)

where s = 1, 2, 3 are the three polarizations of the phonons and the integral is over

the Brillouin zone.

This can be rewritten in terms of the phonon density of states, g(ω) as:

E = V
∫ ∞

0
dω g(ω)

h̄ω

eβh̄ω − 1
(4.56)

where

g(ω) =
∑
s

∫
B.Z.

d3k

(2π)3
δ (ω − ωs(k)) (4.57)

The total number of states is given by:

∫ ∞
0
dω g(ω) =

∫ ∞
0
dω

∑
s

∫
B.Z.

d3k

(2π)3
δ (ω − ωs(k))

= 3
∫

B.Z.

d3k

(2π)3

= 3
Nions

V
(4.58)

The total number of normal modes is equal to the total number of ion degrees of

freedom.

For a continuum elastic medium, there are two transverse modes with velocity vt

and one longitudinal mode with velocity vl. In the limit that the lattice spacing is
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very small, a→ 0, we expect this theory to be valid. In this limit, the Brillouin zone

is all of momentum space, so

gCEM(ω) =
∫ d3k

(2π)3
(2δ (ω − vtk)) + δ (ω − vlk)))

=
1

2π2

(
2

v3
t

+
1

v3
l

)
ω2 (4.59)

In a crystalline solid, this will be a reasonable approximation to g(ω) for kBT �

h̄vt/a where the only phonons present will be at low energies, far from the Brillouin

zone boundary. At high temperatures, there will be thermally excited phonons near

the Brillouin zone boundary, where the spectrum is definitely not linear, so we cannot

use the continuum approximation. In particular, this g(ω) does not have a finite

integral, which violates the condition that the integral should be the total number of

degrees of freedom.

A simple approximation, due to Debye, is to replace the Brillouin zone by a sphere

of radius kD and assume that the spectrum is linear up to kD. In other words, Debye

assumed that:

gD(ω) =


3

2π2v3 ω
2 if ω < ωD

0 if ω > ωD

Here, we have assumed, for simplicity, that vl = vt and we have written ωD = vkD.

ωD is chosen so that

3
Nions

V
=

∫ ∞
0
dω g(ω)

=
∫ ωD

0
dω

3

2π2v3
ω2

=
ω3
D

2π2v3
(4.60)

i.e.

ωD =
(
6π2v3Nions/V

) 1
3 (4.61)

With this choice,

E = V
∫ ωD

0
dω

3

2π2v3
ω2 h̄ω

eβh̄ω − 1
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= V
3(kBT )4

2π2v3h̄3

∫ βh̄ωD

0
dx

x3

ex − 1
(4.62)

In the low temperature limit, βh̄ωD → ∞, we can take the upper limit of the

integral to ∞ and:

E ≈ V
3(kBT )4

2π2v3h̄3

∫ ∞
0
dx

x3

ex − 1
(4.63)

The specific heat is:

CV ≈ T 3

[
V

12k4
B

2π2v3h̄3

∫ ∞
0
dx

x3

ex − 1

]
(4.64)

The T 3 contribution to the specific heat of a solid is often the most important con-

tribution to the measured specific heat.

For T →∞,

E ≈ V
3(kBT )4

2π2v3h̄3

∫ βh̄ωD

0
dx x2

= V
ω3
D

2π2v3
kBT

= 3Nions kBT (4.65)

so

CV ≈ 3Nions kB (4.66)

The high-temperature specific heat is just kB/2 times the number of degrees of free-

dom, as in classical statistical mechanics.

At high-temperature, we were guaranteed the right result since the density of

states was normalized to give the correct total number of degrees of freedom. At

low-temperature, we obtain a qualitatively correct result since the spectrum is linear.

To obtain the exact result, we need to allow for longitudinal and transverse velocities

which depend on the direction, vt
(
k̂
)
, vl

(
k̂
)
, since rotational invariance is not present.

Debye’s formula interpolates between these well-understood limits.

We can define θD by kBθD = h̄ωD. For lead, which is soft, θD ≈ 88K, while for

diamond, which is hard, θD ≈ 1280K.
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4.8 More Realistic Phonon Spectra: Optical Phonons,

van Hove Singularities

Although Debye’s theory is reasonable, it clearly oversimplifies certain aspects of the

physics. For instance, consider a crystal with a two-site basis. Half of the phonon

modes will be optical modes. A crude approximation for the optical modes is an

Einstein spectrum:

gE(ω) =
Nions

2
δ(ω − ωE) (4.67)

In such a case, the energy will be:

E = V
3(kBT )4

2π2v3h̄3

∫ βh̄ωmax

0
dx

x3

ex − 1
+ V

Nions

2

h̄ωE
eβh̄ωE − 1

(4.68)

with ωmax chosen so that

3
Nions

2
=

ω3
max

2π2v3
(4.69)

Another feature missed by Debye’s approximation is the existence of singularities

in the phonon density of states. Consider the spectrum of the linear chain:

ω(k) = 2
(
B

m

) 1
2

∣∣∣∣∣sin ka2
∣∣∣∣∣ (4.70)

The minimum of this spectrum is at k = 0. Here, the density of states is well described

by Debye theory which, for a 1D chain predicts g(ω) ∼ const.. The maximum is at

k = π/a. Near the maximum, Debye theory breaks down; the density of states is

singular:

g(ω) =
2

πa

1√
ω2

max − ω2
(4.71)

In 3D, the singularity will be milder, but still present. Consider a cubic lattice.

The spectrum can be expanded about a maximum as:

ω(k) = ωmax − αx(kmax
x − kx)2 − αy

(
kmax
y − ky

)2
− αz(kmax

z − kz)2 (4.72)
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Then (6 maxima; 1/2 of each ellipsoid is in the B.Z.)

G(ω) ≡
∫ ωmax

ω
dω g(ω)

= 6 · 1

2
· V

(2π)3

(
vol. of ellipsoid

)

= 3
V

(2π)3

4

3
π

(ωmax − ω)
3
2

(αxαyαz)
1
2

(4.73)

Differentiating:

g(ω) =
3V

4π2

(ωmax − ω)
1
2

(αxαyαz)
1
2

(4.74)

In 2D and 3D, there can also be saddle points, where ~∇kω(k) = 0, but the

eigenvalues of the second derivative matrix have different signs. At a saddle point,

the phonon spectrum again has a square root singularity. van Hove proved that every

3D phonon spectrum has at least one maximum and two saddle points (one with one

negative eigenvalue, one with two negative eigenvalues). To see why this might be

true, draw the spectrum in the full k-space, repeating the Brillouin zone. Imagine

drawing lines connecting the minima of the spectrum to the nearest neighboring

minima (i.e. from each copy of the B.Z. to its neighbors). Imagine doing the same

with the maxima. These lines intersect; at these intersections, we expect saddle

points.

4.9 Lattice Structures

Thus far, we have focussed on general properties of the vibrational physics of crys-

talline solids. Real crystals come in a variety of different lattice structures, to which

we now turn our attention.
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4.9.1 Bravais Lattices

Bravais lattices are the underlying structure of a crystal. A 3D Bravais lattice is

defined by the set of vectors ~R

{
~R
∣∣∣ ~R = n1~a1 + n2~a2 + n3~a3; ni ∈ Z

}
(4.75)

where the vectors ~ai are the basis vectors of the Bravais lattice. (Do not confuse with

a lattice with a basis.) Every point of a Bravais lattice is equivalent to every other

point. In an elemental crystal, it is possible that the elemental ions are located at the

vertices of a Bravais lattice. In general, a crystal structure will be a Bravais lattice

with a basis.

The symmetry group of a Bravais lattice is the group of translations through the

lattice vectors together with some discrete rotation group about (any) one of the

lattice points. In the problem set (Ashcroft and Mermin, problem 7.6) you will show

that this rotation group can only have 2-fold, 3-fold, 4-fold, and 6-fold rotation axes.

There are 5 different types of Bravais lattice in 2D: square, rectangular, hexago-

nal, oblique, and body-centered rectangular. There are 14 different types of Bravais

lattices in 3D. The 3D Bravais lattices are discussed in are described in Ashcroft and

Mermin, chapter 7 (pp. 115-119). We will content ourselves with listing the Bravais

lattices and discussing some important examples.

Bravais lattices can be grouped according to their symmetries. All but one can

be obtained by deforming the cubic lattices to lower the symmetry.

• Cubic symmetry: cubic, FCC, BCC

• Tetragonal: stretched in one direction, a×a×c; tetragonal, centered tetragonal

• Orthorhombic: sides of 3 different lengths a × b × c, at right angles to each

other; orthorhombic, base-centered, face-centered, body-centered.
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• Monoclinic: One face is a parallelogram, the other two are rectangular; mono-

clinic, centered monoclinic.

• Triclinic: All faces are parallelograms.

• Trigonal: Each face is an a× a rhombus.

• Hexagonal: 2D hexagonal lattices of side a, stacked directly above one another,

with spacing c.

Examples:

• Simple cubic lattice: ~ai = a x̂i.

• Body-centered cubic (BCC) lattice: points of a cubic lattice, together with the

centers of the cubes ∼= interpenetrating cubic lattices offset by 1/2 the body-

diagonal.

~a1 = a x̂1 , ~a2 = a x̂2 , ~a3 =
a

2
(x̂1 + x̂2 + x̂3) (4.76)

Examples: Ba, Li, Na, Fe, K, Tl

• Face-centered cubic (FCC) lattice: points of a cubic lattice, together with the

centers of the sides of the cubes, ∼= interpenetrating cubic lattices offset by 1/2

a face-diagonal.

~a1 =
a

2
(x̂2 + x̂3) , ~a2 =

a

2
(x̂1 + x̂3) , ~a3 =

a

2
(x̂1 + x̂2) (4.77)

Examples: Al, Au, Cu, Pb, Pt, Ca, Ce, Ar.

• Hexagonal Lattice: Parallel planes of triangular lattices.

~a1 = a x̂1 , ~a2 =
a

2

(
x̂1 +

√
3 x̂2

)
, ~a3 = c x̂3 (4.78)



Chapter 4: Broken Translational Invariance in the Solid State 50

Bravais lattices can be broken up into unit cells such that all of space can be

recovered by translating a unit cell through all possible lattice vectors. A primitive

unit cell is a unit cell of minimal volume. There are many possible choices of primitive

unit cells. Given a basis, ~a1,~a2,~a3, a simple choice of unit cell is the region:

{
~r
∣∣∣~r = x1~a1 + x2~a2 + x3~a3; xi ∈ [0, 1]

}
(4.79)

The volume of this primitive unit cell and, thus, any primitive unit cell is:

~a1 · ~a2 × ~a3 (4.80)

An alternate, symmetrical choice is the Wigner-Seitz cell: the set of all points

which are closer to the origin than to any other point of the lattice. Examples:

Wigner-Seitz for square=square, hexagonal=hexagon (not parallelogram), oblique=distorted

hexagon, BCC=octohedron with each vertex cut off to give an extra square face (A+M

p.74).

4.9.2 Reciprocal Lattices

If ~a1, ~a2, ~a3 span a Bravais lattice, then

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3

(4.81)

span the reciprocal lattice, which is also a bravais lattice.

The reciprocal of the reciprocal lattice is the set of all vectors ~r satisfying ei
~G·~r = 1

for any recprocal lattice vector ~G, i.e. it is the original lattice.

As we discussed above, a simple cubic lattice spanned by

ax̂1 , ax̂2 , ax̂3 (4.82)
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has the simple cubic reciprocal lattice spanned by:

2π

a
x̂1 ,

2π

a
x̂2 ,

2π

a
x̂3 (4.83)

An FCC lattice spanned by:

a

2
(x̂2 + x̂3) ,

a

2
(x̂1 + x̂3) ,

a

2
(x̂1 + x̂2) (4.84)

has a BCC reciprocal lattice spanned by:

4π

a

1

2
(x̂2 + x̂3 − x̂1) ,

4π

a

1

2
(x̂1 + x̂3 − x̂2) ,

4π

a

1

2
(x̂1 + x̂2 − x̂3) (4.85)

Conversely, a BCC lattice has an FCC reciprocal lattice.

The Wigner-Seitz primitive unit cell of the reciprocal lattice is the first Brillouin

zone. In the problem set (Ashcroft and Mermin, problem 5.1), you will show that the

Brillouin zone has volume (2π)3/v if the volume of the unit cell of the original lattice

is v. The first Brillouin zone is enclosed in the planes which are the perpendicular

bisectors of the reciprocal lattice vectors. These planes are called Bragg planes for

reasons which will become clear below.

4.9.3 Bravais Lattices with a Basis

Most crystalline solids are not Bravais lattices: not every ionic site is equivalent to

every other. In a compound this is necessarily true; even in elemental crystals it is

often the case that there are inequivalent sites in the crystal structure. These crystal

structures are lattices with a basis. The classification of such structures is discused

in Ashcroft and Mermin, chapter 7 (pp. 119-126). Again, we will content ourselves

with discussing some important examples.

• Honeycomb Lattice (2D): A triangular lattice with a two-site basis. The trian-

gular lattice is spanned by:

~a1 =
a

2

(√
3 x̂1 + 3 x̂2

)
, ~a2 = a

√
3 x̂1 (4.86)
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The two-site basis is:

0 , a x̂2 (4.87)

Example: Graphite

• Diamond Lattice: FCC lattice with a two-site basis: The two-site basis is:

0 ,
a

4
(x̂1 + x̂2 + x̂3) (4.88)

Example: Diamond, Si, Ge

• Hexagonal Close-Packed (HCP): Hexagonal lattice with a two-site basis:

0 ,
a

2
x̂1 +

a

2
√

3
x̂2 +

c

2
x̂3 (4.89)

Examples: Be,Mg,Zn, . . . .

• Sodium Chloride: Cubic lattice with Na and Cl at alternate sites ∼= FCC lattice

with a two-site basis:

0 ,
a

2
(x̂1 + x̂2 + x̂3) (4.90)

Examples: NaCl,NaF,KCl

4.10 Bragg Scattering

One way of experimentally probing a condensed matter system involves scattering a

photon or neutron off the system and studying the energy and angular dependence

of the resulting cross-section. Crystal structure experiments have usually been done

with X-rays.

Let us first examine this problem intuitively and then in a more systematic fashion.

Consider, first, elastic scattering of X-rays. Think of the X-rays as photons which

can take different paths through the crystal. Consider the case in which ~k is the
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wavevector of an incoming photon and ~k′ is the wavevector of an outgoing photon.

Let us, furthermore, assume that the photon only scatters off one of the atoms in

the crystal (the probability of multiple scattering is very low). This atom can be

any one of the atoms in the crystal. These different scattring events will interfere

constructively if the path lengths differ by an integer number of wavelengths. The

extra path length for a scattering off an atom at ~R, as compared to an atom at the

origin is:

~R · ~k +
(
−~R · ~k′

)
= ~R ·

(
~k − ~k′

)
(4.91)

If this is an integral multiple of 2π for all lattice vectors ~R, then scattering interferes

constructively. By definition, this implies that ~k − ~k′ must be a reciprocal lattice

vector. For elastic scatering, |~k| = |~k′|, so this implies that there is a reciprocal lattic

vector ~G of magnitude ∣∣∣~G∣∣∣ = 2|~k| sin θ (4.92)

where θ is the angle between the incoming and outgoing X-rays.

To rederive this result more formally, let us assume that our crystal is in thermal

equilibrium at inverse temperature β and that photons interact with our crystal via

the Hamiltonian H ′. Suppose that photons of momentum ~ki, and energy ωi are

scattered by our system. The differential cross-section for the photons to be scattered

into a solid angle dΩ centered about ~kf and into the energy range between ωf ± dω

is:
d2σ

dΩ dω
=
∑
m,n

kf
ki

∣∣∣〈~kf ;m |H ′|~ki;n〉∣∣∣2 e−βEn δ (ω + En − Em) (4.93)

where ω = ωi − ωf and n and m label the initial and final states of our crystal. Let

~q = ~kf − ~ki.

Let us assume that the interactions between the photon and the ions in our system

is of the form:

H ′ =
∑
R

U
(
~x−

(
~R + ~u

(
~R
)))

(4.94)



Chapter 4: Broken Translational Invariance in the Solid State 54

Then

〈
~kf ;m |H ′|~ki;n

〉
=

∫
d3~x

1

V
ei~q·~x

〈
m

∣∣∣∣∣∑
R

U
(
~x−

(
~R + ~u

(
~R
)))∣∣∣∣∣n

〉

=

〈
m

∣∣∣∣∣ 1

V

∑
R

e−i~q·(
~R+~u(~R))

∣∣∣∣∣n
〉
Ũ(~q)

=
1

V

∑
R

[
e−i~q·

~R
〈
m
∣∣∣∣e−i~q·~u(~R)

∣∣∣∣n〉] Ũ(~q)

=

[
1

V

∑
R

e−i~q·
~R

] 〈
m
∣∣∣e−i~q·~u(0)

∣∣∣n〉 Ũ(~q) (4.95)

Let us consider, first, the case of elastic scattering, in which the state of the crystal

does not change. Then |n〉 = |m
〉
, |ki| = |kf | ≡ k, |q| = 2k sin θ

2
, and:

〈
~kf ;n |H ′|~ki;n

〉
=

[
1

V

∑
R

e−i~q·
~R

] 〈
n
∣∣∣e−i~q·~u(0)

∣∣∣n〉 Ũ(~q) (4.96)

Let us focus on the sum over the lattice:

1

V

∑
R

e−i~q·
~R =

∑
R.L.V. G

δ~q, ~G (4.97)

The sum is 1 if ~q is a reciprocal lattice vector and vanishes otherwise. The scattering

cross-section is given by:

d2σ

dΩdω
=
∑
n

e−βEn
∣∣∣〈n ∣∣∣e−i~q·~u(0)

∣∣∣n〉∣∣∣2 ∣∣∣Ũ(~q)
∣∣∣2 [ ∑

R.L.V. G

δ~q, ~G

]
(4.98)

In other words, the scattering cross-section is peaked when the photon is scattered

through a reciprocal lattice vector ~kf = ~ki + ~G. For elastic scattering, this requires

(
~ki
)2

=
(
~ki + ~G

)2
(4.99)

or, (
~G
)2

= −2~ki · ~G (4.100)

This is called the Bragg condition. It is satisfied when the endpoint of ~k is on a Bragg

plane. When it is satisfied, Bragg scattering occurs.
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When there is structure within the unit cell, as in a lattice with a basis, the

formula is slightly more complicated. We can replace the photon-ion interaction by:

H ′ =
∑
R

∑
b

Ub
(
~x−

(
~R +~b+ ~u(~R +~b)

))
(4.101)

Then,
1

V

∑
R

e−i~q·
~R Ũ(~q) (4.102)

is replaced by
1

V

∑
R

fq e
−i~q·~R (4.103)

where

fq =
∑
b

Ub (~x) e−i~q·~x (4.104)

As a result of the structure factor, fq, the scattering amplitude need not have a peak

at every reciprocal lattic vector, ~q.

Of course, the probability that the detector is set up at precisely the right angle

to receive ~kf = ~ki + ~G is very low. Hence, these experiments are usually done with

a powder so that there will be Bragg scattering whenever 2k sin θ
2

= |G|. By varying

θ, a series of peaks are seen at, e.g. π/6, π/4, etc., from which the reciprocal lattice

vectors are reconstructed.

Since |k| ∼ |G| ∼
(
1Å
)−1

, the energy of the incoming photons is ∼ h̄ck ∼ 104eV

which is definitely in the X-ray range.

Thus far, we have not looked closely at the factor:

∣∣∣〈m ∣∣∣e−i~q·~u(0)
∣∣∣n〉∣∣∣2 (4.105)

This factor results from the vibration of the lattice due to phonons. In elastic scat-

tering, the amplitude of the peak will be reduced by this factor since the probability

of the ions forming a perfect lattice is less than 1. The inelastic amplitude will con-

tain contributions from processes in which the incoming photon or neutron creates a
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phonon, thereby losing some energy. By measuring inelastic neutron scattering (for

which the energy resolution is better than for X-rays), we can learn a great deal about

the phonon spectrum.



Chapter 5

Electronic Bands

5.1 Introduction

Thus far, we have ignored the dynamics of the elctrons and focussed on the ionic

vibrations. However, the electrons are important for many properties of solids. In

metals, the specific heat is actually CV = γT + αT 3. The linear term is due to the

electrons. Electrical conduction is almost always due to the electrons, so we will need

to understand the dynamics of electrons in solids in order to compute, for instance,

the conductivity σ(T, ω).

In order to do this, we will need to understand the quantum mechanics of electrons

in the periodic potential due to the ions. Such an analysis will enable us to understand

some broad features of the electronic properties of crystalline solids, such as the

distinction between metals and insulators.

5.2 Independent Electrons in a Periodic Potential:

Bloch’s theorem

Let us first neglect all interactions between the electrons and focus on the interactions

between each electron and the ions. This may seem crazy since the inter-electron

57
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interaction isn’t small, but let us make this approximation and proceed. At some

level, we can say that we will include the electronic contribution to the potential

in some average sense so that the electrons move in the potential created by the

ions and by the average electron density (of course, we shoudld actually do this self-

consistently). Later, we will see why this is sensible.

When the electrons do not interact with each other, the many-electron wavefunc-

tion can be constructed as a Slater determinant of single-electron wavefunctions.

Hence, we have reduced the problem to that of a single electron moving in a lattice

of ions. The Hamiltonian for such a problem is:

H = − h̄2

2m
∇2 +

∑
R

V (~x− ~R− ~u(~R)) (5.1)

expanding in powers of ~u(~R),

H = − h̄2

2m
∇2 +

∑
R

V (~x− ~R)−
∑
R

~∇V (~x− ~R) · ~u(~R) + . . . (5.2)

The third term and the . . . are electron-phonon interaction terms. They can be treated

as a perturbation. We will focus on the first two terms, which describe an electron

moving in a periodic potential. This highly simplified problem already contains much

of the qualitative physics of a solid.

Let us begin by proving an important theorem due to Bloch.

Bloch’s Theorem: If V (~r + ~R) = V (~r) for all lattice vectors ~R of some given

lattice, then for any solution of the Schrödinger equation in this potential,

− h̄2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r) (5.3)

there exists a ~k such that

ψ(~r + ~R) = ei
~k·~R ψ(~r) (5.4)

Proof: Consider the lattice translation operator TR which acts according to

TRχ(~r) = χ(~r + ~R) (5.5)
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Then

TRHχ(~r) = HTRχ(~r + ~R) (5.6)

i.e. [TR, H] = 0. Hence, we can take our energy eigenstates to be eigenstates of TR.

Hence, for any energy eigenstate ψ(~r),

TRψ(~r) = c(~R)ψ(~r) (5.7)

The additivity of the translation group implies that,

c(~R)c(~R′) = c(~R + ~R′) (5.8)

Hence, there is some k such that

c(~R) = ei
~k·~R (5.9)

Since ei
~G·~R = 1 if ~G is a reciprocal lattice vector, we can always take ~k to be in the

first Brillouin zone.

5.3 Tight-Binding Models

Let’s consider a very simple model of a 1D solid in which we imagine that the atomic

nuclei lie along a chain of spacing a. Consider a single ion and focus on two of its

electronic energy levels. In real systems, we will probably consider s and d orbitals,

but this is not important here; in our toy model, these are simply two electronic

states which are localized about the atomic nucleus. We’ll call them |1〉 and |2〉, with

energies ε01 and ε02. Let’s further imagine that the splitting ε02− ε01 between these levels

is large. Now, when we put this atom in the linear chain, there will be some overlap

between these levels and the corresponding energy levels on neighboring atoms. We

can model such a system by the Hamiltonian:

H =
∑
R

(
ε10|R, 1〉〈R, 1|+ ε20|R, 2〉〈R, 2|

)
−

∑
R,R′ n.n

(t1|R, 1〉〈R′, 1|+ t2|R, 2〉〈R′, 2|)

(5.10)
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We have assumed that t1 is the amplitude for an electron at |R, 1〉 to hop to |R′, 1〉,

and similarly for t2. For simplicity, we have ignored the possibility of hopping from

|R, 1〉 to |R′, 2〉, which is unimportant anyway when ε0 is large. The eigenstates of

this Hamiltonian are:

|k, 1〉 =
∑
R

eikR|R, 1〉 (5.11)

with energy

ε1(k) = ε01 − 2t1 cos ka (5.12)

and

|k, 2〉 =
∑
R

eikR|R, 2〉 (5.13)

with energy

ε2(k) = ε02 − 2t2 cos ka (5.14)

Note, first, that k lives in the first Brillouin zone since

|k, i〉 ≡
∣∣∣k +

2πn

a
, i
〉

(5.15)

Now, observe that the two atomic energy levels have broadened into two energy

bands. There is a band gap between these bands of magnitude ε02− ε01−2t1−2t2. This

is a characteristic feature of electronic states in a periodic potential: the states break

up into bands with energy gaps separating the bands.

How many states are there in each band? As we discussed in the context of

phonons, there are as many allowed k’s in the Brillouin zone as there are ions in the

crystal. Let’s repeat the argument. The Brillouin zone has k-space extent 2π/a. In

a finite-size system of length L with periodic boundary conditions, allowed k’s are

of the form 2πn/L where n is an integer. Hence, there are L/a = Nions allowed k’s

in the Brillouin zone. (This argument generalizes to arbitrary lattices in arbitrary

dimension.) Hence, there are as many states as lattice sites. Each state can be filled

by one up-spin electon and one down-spin electron. Hence, if the atom is monovalent
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– i.e. if there is one electron per site – then, in the ground state, the lower band,

|k, 1〉 is half-filled and the upper band is empty. The Fermi energy is at ε01. The

Fermi momentum (or, more properly, Fermi crystal momentum) is at ±π/2a. At

low temperature, the fact that there is a gap far away from the Fermi momentum is

unimportant, and the Fermi sea will behave just like the Fermi sea of a free Fermi

gas. In particular, there is no energy gap in the many-electron spectrum since we

can always excite an electron from a filled state just below the Fermi surface to one

of the unfilled states just above the gap. For instance, the electronic contribution to

the specific heat will be CV ∼ T . The difference is that the density of states will

be different from that of a free Fermi gas. In situations such as this, when a band

is partially filled, the crystal is (almost always) a metal. (Sometimes inter-electron

interactions can make such a system an insulator.)

If there are two electrons per lattice site, then the lower band is filled and the

upper band is empty in the ground state. In such a case, there is an energy gap

Eg = ε02 − ε01 − 2t1 − 2t2 between the ground state and the lowest excited state

which necessarily involves exciting an electron from the lower band to the upper

band. Crystals of this type, which have no partially filled bands, are insulators. The

electronic contribution to the specific heat will be suppressed by a factor of e−Eg/T .

Note that the above tight-binding model can be generalized to arbitrary dimension

of lattice. For instance, a cubic lattice with one orbital per site has tight-binding

spectrum:

ε(k) = −2t (cos kxa+ cos kya+ cos kza) (5.16)

Again, if there is one electron per site, the band will be half-filled (and metallic); if

there are two electrons per site the band will be filled (and insulating).

The model which we have just examined is grossly oversimplified but can, never-

theless, be justified, to an extent. Let us reconsider our lattice of atoms.
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Electronic orbitals of an isolated atom:

ϕn(~r) (5.17)

with energies εn:

− h̄2

2m
∇2ϕn(~r) + V (~r)ϕn(~r) = εnϕn(~r) (5.18)

We now want to solve:

− h̄2

2m
∇2ψk(~r) +

∑
R

V (~r + ~R)ψk(~r) = ε(k)ψk(~r) (5.19)

Let’s try the ansatz:

ψk(~r) =
∑
R,n

cn e
i~k·~R ϕn(~r + ~R) (5.20)

which satisfies Bloch’s theorem. Substituting into Schrödinger’s equation and taking

the matrix element with ϕm, we get:

∫
d3r ϕ∗m(~r)

(
− h̄2

2m
∇2 +

∑
R′V (~r + ~R′)

)∑
R,ncn e

i~k·~R ϕn(~r + ~R) =

ε(k)
∫
d3r ϕ∗m(~r)

∑
R,ncn e

i~k·~R ϕn(~r + ~R) (5.21)

Let’s write

− h̄2

2m
∇2 +

∑
R′
V (~r + ~R′) = − h̄2

2m
∇2 + V (~r + ~R) +

∑
R′ 6=R

V (~r + ~R′)

= Hat,R + ∆VR(r) (5.22)

Then, we have∫
d3r ϕ∗m(~r)

∑
R,n

cn e
i~k·~R (Hat,R + ∆VR(r))ϕn(~r + ~R) = ε(k)

∫
d3r ϕ∗m(~r)

∑
R,n

cn e
i~k·~R ϕn(~r + ~R)

(5.23)

∑
R,n

cn εne
i~k·~R

∫
d3r ϕ∗m(~r)ϕn(~r + ~R) +

∑
R,n

cn e
i~k·~R

∫
d3r ϕ∗m(~r)∆VR(r)ϕn(~r + ~R) =

ε(k)cm + ε(k)
∑
R 6=0,n

ei
~k·~R cn

∫
d3r ϕ∗m(~r)ϕn(~r + ~R)(5.24)
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cmεm +
∑
R 6=0,ncnεne

i~k·~R ∫ d3r ϕ∗m(~r)ϕn(~r + ~R) +∑
R,ncne

i~k·~R ∫ d3r ϕ∗m(~r) [∆VR(r)]ϕn(~r + ~R) =

ε(k)cm + ε(k)
∑
R 6=0,ne

i~k·~R cn
∫
d3r ϕ∗m(~r)ϕn(~r + ~R) (5.25)

Writing:

αmn(~R) =
∫
d3r ϕ∗m(~r)ϕn(~r + ~R)

γmn(~R) = −
∫
d3r ϕ∗m(~r) [∆VR(r)]ϕn(~r + ~R) (5.26)

We have:

cm (εm − ε(k)) +
∑
R 6=0,n

cn (εn − ε(k)) ei
~k·~R αmn(~R) =

∑
R,n

cne
i~k·~R γmn(~R) (5.27)

Both αmn(~R) and γmn(~R) are exponentially small, ∼ e−R/a0 . In particular, αmn(~R)

and γmn(~R) are much larger for nearest neighbors than for any other sites, so let’s

neglect the other matrix elements and write αmn = αmn(~Rn.n.), γmn = γmn(~Rn.n.),

vmn = γmn(0). In problem 2 of problem set 7, so may make these approximations.

Suppose that we make the approximation that the lth orbital is well separated in

energy from the others. Then we can neglect αln(~R) and γln(~R) for n 6= l. We write

β = vll. Focusing on the m = l equation, we have:

(εl − ε(k)) + αll (εl − ε(k))
∑
Rn.n.

ei
~k·~R = β + γll

∑
Rn.n.

ei
~k·~R (5.28)

Hence,

ε(k) = εl −
β + γll

∑
Rn.n.e

i~k·~R

1 + αll
∑
Rn.n. ei

~k·~R
(5.29)

If we neglect the α’s and retain only the γ’s, then we recover the result of our

phenomenological model. For instance, for the cubic lattice, we have:

ε(k) = [εl − β]− 2γll [cos kxa+ cos kya+ cos kza] (5.30)

Tight-binding models give electronic wavefunctions which are a coherent super-

position of localized atomic orbitals. Such wavefunctions have very small amplitude



Chapter 5: Electronic Bands 64

in the interstitial regions between the ions. Such models are valid, as we have seen,

when there is very little overlap between atomic wavefunctions on neighboring atoms.

In other words, a tight-binding model will be valid when the size of an atomic orbital

is smaller than the interatomic distance, i.e. a0 � R. In the case of core electrons,

e.g. 1s, 2s, 2p, this is the case. However, this is often not the case for valence elec-

trons, e.g. 3s electrons. Nevertheless, the tight-binding method is a simple method

which gives many qualitative features of electronic bands. In the study of high-Tc

superconductivity, it has proven useful for this reason.

5.4 The δ-function Array

Let us now consider another simple toy-model of a solid, a 1D array of δ-functions:(
− h̄2

2m

d2

dx2
+ V

∞∑
n=−∞

δ(x− na)

)
ψ(x) = E ψ(x) (5.31)

Between the peaks of the δ functions, ψ(x) must be a superposition of the plane waves

eiqx and e−iqx with energy E(q) = h̄2q2/2m. Between x = 0 and x = a,

ψ(x) = eiqx+iα + e−iqx−iα (5.32)

with α complex. According to Bloch’s theorem,

ψ(x+ a) = eika ψ(x) (5.33)

Hence, in the region between x = a and x = 2a,

ψ(x) = eika
(
eiq(x−a)+iα + e−iq(x−a)−iα

)
(5.34)

Note that k which determines the transformation property under a translation x →

x + a is not the same as q, which is the ‘local’ momentum of the electron, which

determines the energy. Continuity at x = a implies that

cos(qa+ α) = eika cosα (5.35)
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or,

tanα =
cos qa− eika

sin qa
(5.36)

Integrating Schrödinger’s equation from x = a− ε tox = a+ ε, we have,

sin(qa+ α)− eika sinα =
2mV

h̄2q
eika cosα (5.37)

or,

tanα =

2mV
h̄2q

eika − sin qa

cos qa− eika
(5.38)

Combining these equations,

e2ika − 2

(
cos qa+

mV

h̄2q
sin qa

)
eika + 1 = 0 (5.39)

The sum of the two roots is cos ka:

cos ka =
cos(qa− δ)

cos δ
(5.40)

where

tan δ =
mV

h̄2q
(5.41)

For each k ∈
[
− π

a
, π
a

]
, there are infinitely many roots q of this equation, qn(k). The

energy spectrum of the nth band is:

En(k) =
h̄2

2m
[qn(k)]2 (5.42)

±k have the same root qn(k) = qn(−k). Not all q’s are allowed. For instance, the

values qa−δ = nπ are not allowed. These regions are the energy gaps between bands.

Consider, for instance, k = π/a.

cos(qa− δ) = cos δ (5.43)

This has the solutions

qa = π , π + 2δ (5.44)



Chapter 5: Electronic Bands 66

For V small, the latter solution occurs at qa = π + 2mV a
πh̄2 . The energy gap is:

E2

(
π

a

)
− E1

(
π

a

)
≈ E

(
π

a
+

2mV a

πh̄2

)
− E

(
π

a

)
≈ 2V/a (5.45)

5.5 Nearly Free Electron Approximation

According to Bloch’s theorem, electronic wavefunctions can be expanded as:

ψ(x) =
∑
G

ck−G e
i(~k− ~G)·~x (5.46)

In the nearly free electron approximation, we assume that electronic wavefunctions are

given by the superposition of a small number of plane waves. This approximation is

valid, for instance, when the periodic potential is weak and contains a limited number

of reciprocal lattice vectors.

Let’s see how this works. Schrödinger’s equation in momentum space reads:(
h̄2k2

2m
− ε(~k)

)
ck +

∑
G

ck−G VG = 0 (5.47)

Second-order perturbation theory tells us that (let’s assume that Vk = 0)

ε(~k) = ε0(~k) +
∑
G6=0

|VG|2

ε0(~k)− ε0(~k − ~G)
(5.48)

where

ε0(~k) =
h̄2k2

2m
(5.49)

Perturbation theory will be valid so long as the second term is small, i.e. so long as

|VG| � ε0(~k)− ε0(~k − ~G) (5.50)

For generic ~k, this will be valid if VG is small. The correction to the energy will

be O
(
|VG|2

)
. However, no matter how small VG is, perturbation theory fails for

degenerate states,
h̄2k2

2m
=
h̄2(k −G)2

2m
(5.51)
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or, when the Bragg condition is satisfied,

G2 = 2~k · ~G (5.52)

In other words, perturbation theory fails when ~k is near a Brillouin zone boundary.

Suppose that VG is very small so that we can neglect it away from the Brillouin

zone boundaries. Near a zone boundary, we can focus on the reciprocal lattice vector

which it bisects, ~G and ignore VG′ for ~G 6= ~G′. We keep only ck and ck−G, where

ε0(k) ≈ ε0(k−G). We can thereby reduce Schrödinger’s equation to a 2×2 equation:

(
ε0(~k)− ε(~k)

)
ck + ck−G VG = 0(

ε0(~k − ~G)− ε(~k − ~G)
)
ck−G + ck V

∗
G = 0 (5.53)

VG′ for ~G 6= ~G′ can be handled by perturbation theory and, therefore, neglected in

the small VG′ limit. In this approximation, the eigenvalues are:

ε±(~k) =
1

2

[
ε0(~k) + ε0(~k − ~G)±

√(
ε0(~k)− ε0(~k − ~G)

)2
+ 4|VG|2

]
(5.54)

At the zone boundary, the bands have been split by

ε+(~k)− ε−(~k) = 2 |VG| (5.55)

The effects of VG′ for ~G 6= ~G′ are now handled perturbatively.

To summarize, the nearly free electron approximation gives energy bands which

are essentially free electron bands away from the Brillouin zone boundaries; near the

Brillouin zone boundaries, where the electronic crystal momenta satisfy the Bragg

condition, gaps are opened.

Though intuitively appealing, the nearly free electron approximation is not very

reasonable for real solids. Since

VG ≈
4πZe2

G2
∼ 13.6 eV (5.56)
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while εF ∼ 10eV ,

|VG| ∼ ε0(~k)− ε0(~k − ~G) (5.57)

and the nearly free electron approximation is not valid.

5.6 Some General Properties of Electronic Band

Structure

Much, much more can be said about electronic band structure. There are many

approximate methods of obtaining energy spectra for more realistic potentials. We

will content ourselves with two observations.

Band Overlap. In 2D and 3D, bands can overlap in energy. As a result, both the

first and second bands can be partially filled when there are two electrons per site.

Consider, for instance, a weak periodic potential of rectangular symmetry:

V (x, y) = Vx cos
2π

a1

x+ Vy cos
2π

a2

x (5.58)

with Vx,y very small and a1 � a2. Using the nearly free electron approximation,

we have a spectrum which is essentially a free-electron parabola, with small gaps

opening at the zone boundary. Since the Brillouin zone is much shorter in the kx-

direction, the Fermi sea will cross the zone boundary in this direction, but not in

the ky-direction. Hence, there will be empty states in the first Brillouin zone, near

(0,±πa2) and occupied states in the second Brillouin zone, near (±πa1, 0). This is a

general feature of 2D and 3D bands. As a result, a solid can be metallic even when

it has two electrons per unit cell.

van Hove singularities. A second feature of electronic energy spectra is the ex-

istence of van Hove singularities. They are singularities in the electronic density of

states, g(ε) ∫
dε g(ε) f(ε) =

∫ d3k

(2π)3
f (ε(k)) (5.59)
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They occur for precisely the same reason as in the case of phonon spectra – as a result

of the lattice periodicity.

Consider the case of a tight-binding model on the square lattice with nearest-

neighbor hopping only.

ε(k) = −2t (cos kxa+ cos kya) (5.60)

~∇kε(k) = 2ta (sin kxa+ sin kya) (5.61)

The density of states is given by:

g(ε) = 2
∫ d2k

(2π)2
δ (ε− ε(k)) (5.62)

Let’s change variables in the integral on the right to E and S which is the arc length

around an equal energy contour ε = ε(k):

g(ε) =
1

2π2

∫
dS

dE∣∣∣~∇kε(k)
∣∣∣δ (ε− E)

=
1

2π2

∫
dS

1∣∣∣~∇kε(k)
∣∣∣ (5.63)

The denominator on the right-hand-side vanishes at the minimum of the band, ~k =

(0, 0), the maxima ~k = (±π/a,±π/a) and the saddle points ~k = (±π/a, 0), (0,±π/a).

At the latter points, the density of states will have divergent slope.

5.7 The Fermi Surface

The Fermi surface is defined by

εn(k) = µ (5.64)

By the Pauli principle, it is the surface in the Brillouin zones which separates the

occupied states, εn(k) < µ, inside the Fermi surface from the unoccupied states

εn(k) > µ outside the Fermi surface. All low-energy electronic excitations involve

holes just below the Fermi surface or electrons just above it. Metals have a Fermi
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surface and, therefore, low-energy excitations. Insulators have no Fermi surface: µ

lies in a band gap, so there is no solution to (5.64).

In the low-density limit the Fermi surface is approximately circular (in 2D) or

spherical (in 3D). Consider the 2D tight-binding model

ε(k) = −2t (cos kxa+ cos kya) (5.65)

For ~k → 0,

ε(k) ≈ −4t+ ta2
(
k2
x + k2

x

)
(5.66)

Hence, for µ+ 4t� t, the Fermi surface is given by the circle:

k2
x + k2

x =
µ+ 4t

ta2
(5.67)

Similarly, in the nearly free electron approximation,

ε(~k) =
h̄2k2

2m
+
∑
G6=0

|VG|2
h̄2k2

2m
− h̄2(k−G)2

2m

(5.68)

For µ→ 0 and VG small, we can neglect the scond term, and, as in the free electron

case, the Fermi surface is given by

k =
1

h̄

√
2mµ (5.69)

Away from the bottom of a band, however, the Fermi surface can look quite

different. In the tight-binding model, for instance, for µ = 0, the Fermi surface is the

diamond kx ± ky = ±π/a.

The chemical potential at zero temperature is usually called the Fermi energy, εF .

The key measure of the number of low-lying states which are available to an electronic

system is the density of states at the Fermi energy, g(εF ). When g(εF ) is large, the

CV , σ, etc. are large; when g(εF ) is small, these quantities are small.
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5.8 Metals, Insulators, and Semiconductors

Earlier we saw that, in order to compute the vibrational properties of a solid, we

needed to determine the phonon spectra of the crystal. A characteristic feature of

these phonon spectra is that there is always an acoustic mode with ω(k) ∼ k for k

small. This mode is responsible for carrying sound in a solid, and it always gives a

Cph
V ∼ T 3 contribution to the specific heat.

In order to compute the electronic properties of a solid, we must similarly de-

termine the electronic spectra. If we ignore the interactions between electrons, the

electronic spectra are determined by the single-electron energy levels in the periodic

potential due to the ions. These energy spectra break up into bands. When there is a

partially filled band, there are low energy excitations, and the solid is a metal. There

will be a Cel
V ∼ T electronic contribution to the specific heat, as in a free fermion

gas. When all bands are either filled or completely empty, there is a gap between the

many-electron ground state and the first excited state; the solid is an insulator and

there is a negligible contribution to the low-temperature specific heat. Let us recall

how this works. Once we have determined the electronic band structure, εn(k), we

can determine the electronic density-of-states:

g(ε) = 2
∑
n

∫
B.Z.

d2k

(2π)2
δ (ε− εn(k)) (5.70)

With the density-of-states in hand, we can compute the thermodynamics. In the limit

kBT � εF ,

N

V
=

∫ ∞
0
dε g(ε)

1

eβ(ε−µ) + 1

=
∫ µ

0
dε g(ε) +

∫ µ

0
dε g(ε)

(
1

eβ(ε−µ) + 1
− 1

)
+
∫ ∞
µ
dε g(ε)

1

eβ(ε−µ) + 1

=
∫ εF

0
dε g(ε) +

∫ µ

εF
dε g(ε)−

∫ µ

0
dε g(ε)

1

e−β(ε−µ) + 1
+
∫ ∞
µ
dε g(ε)

1

eβ(ε−µ) + 1

≈ N

V
+ (µ− εF ) g(εF ) +

∫ ∞
0

kBT dx

ex + 1
(g (µ+ kBTx)− g (µ− kBTx)) +O

(
e−βµ

)



Chapter 5: Electronic Bands 72

=
N

V
+ (µ− εF ) g(εF ) +

∞∑
n=1

(kBT )n+1

n!
g(n)(µ)

∫ ∞
0
dx

x2n−1

ex + 1

≈ N

V
+ (µ− εF ) g(εF ) + (kBT )2 g′ (εF ) I1 (5.71)

with

Ik =
∫ ∞

0
dx

xk

ex + 1
(5.72)

We will only need

I1 =
π2

6
(5.73)

Hence, to lowest order in T ,

(µ− εF ) g(εF ) ≈ −(kBT )2 g′ (εF ) I1 (5.74)

Meanwhile,

E

V
=

∫ ∞
0
dε ε g(ε)

1

eβ(ε−µ) + 1

=
∫ εF

0
dε ε g(ε) +

∫ µ

εF
dε ε g(ε) +

∫ µ

0
dε ε g(ε)

(
1

eβ(ε−µ) + 1
− 1

)
+
∫ ∞
µ
dε ε g(ε)

1

eβ(ε−µ) + 1

≈ E0

V
+ (µ− εF ) εFg(εF )−

∫ µ

0
dε ε g(ε)

1

e−β(ε−µ) + 1
+
∫ ∞
µ
dε ε g(ε)

1

eβ(ε−µ) + 1

=
E0

V
+ (µ− εF ) εFg(εF ) +

∫ ∞
0

kBT dx

ex + 1

(
(µ+ kBTx) g (µ+ kBTx)−

(µ− kBTx) g (µ− kBTx)

)
+O

(
e−βµ

)
≈ E0

V
+ (µ− εF ) εFg(εF ) + (kBT )2 [g (εF ) + εF g

′ (εF )] I1 (5.75)

Substituting (5.74) into the final line of (5.75), we have:

E

V
=
E0

V
+ (kBT )2g (εF ) I1 (5.76)

Hence, the electronic contribution to the low-temperature specific heat of a crys-

talline solid is:
CV
V

=
π2

3
k2
BTg (εF ) (5.77)
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In a metal, the Fermi energy lies in some band; hence g (εF ) is non-zero. In an

insulator, all bands are either completely full or completely empty. Hence, the Fermi

energy lies between two bands, and g (εF ) = 0.

Each band contains twice as many single-electron levels (the factor of 2 comes

from the spin) as there are lattice sites in the solid. Hence, an insulator must have an

even number of electrons per unit cell. A metal will result if there is an odd number

of electrons per unit cell (unless the electron-electron interactions, which we have

neglected, are strong); as a result of band overlap, a metal can also result if there is

an even number of electrons per unit cell.

A semiconductor is an insulator with a small band gap. A good insulator will

have a band gap of Eg ∼ 4eV. At room temperature, the number of electrons which

will be excited out of the highest filled band and into the lowest empty band will

be ∼ e−Eg/2kBT ∼ 10−35 which is negligible. Hence, the filled and empty bands will

remain filled and empty despite thermal excitation. A semiconductor can have a band

gap of order Eg ∼ 0.25− 1eV. As a result, the thermal excitation of electrons can be

as high as ∼ e−Eg/2kBT ∼ 10−2. Hence, there will be a small number of carriers excited

into the empty band, and some conduction can occur. Doping a semiconductor with

impurities can enhance this.

The basic property of a metal is that it conducts electricity. Some insight into

electrical conduction can be gained from the classical equations of motion of a electron,

i.e. Drude theory:

d

dt
~r =

1

m
~p

d

dt
~p = −eE(~r, t)− e

m
~p×B(~r, t) (5.78)

If we continue to treat the electric and magnetic fields classically, but treat the elec-

trons in a periodic potential quantum mechanically, this is replaced by:

d

dt
~r = vn(k) =

1

h̄
~∇kεn(k)
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h̄
d

dt
~k = −eE(~r, t)− e vn(k)×B(~r, t)− h̄

τ
~k (5.79)

The final term in the second equation is the scattering rate. It is caused by effects

which we have neglected in our analysis thus far: impurities, phonons, and electron-

electron interactions. Without these effects, electrons would accelerate forever in a

constant electric field, and the conductivity would be infinite. As a result of scattering,

σ is finite. Hence, a finite electric field leads to a finite current:

~j =
∑
n

∫ d3k

(2π)3

1

h̄
~∇kεn(k) (5.80)

Filled bands give zero contribution to the current since they vanish by integration

by parts. Since an insulator has only filled or empty bands, it cannot carry cur-

rent. Hence, it is not characterized by its conductivity but, instead, by its dielectric

constant, ε.

5.9 Electrons in a Magnetic Field: Landau Bands

In 1879, E.H. Hall performed an experiment designed to determine the sign of the

current-carrying particles in metals. If we suppose that these particles have charge

e (with a sign to be determined) and mass m, the classical equations of motion of

charged particles in an electric field, E = Exx̂ + Eyŷ, and a magnetic field, B = Bẑ

are:

dpx
dt

= eEx − ωcpy − px/τ
dpy
dt

= eEy + ωcpx − py/τ (5.81)

where ωc = eB/m and τ is a relaxation rate determined by collisions with impurities,

other electrons, etc. These are the equations which we would expect for free particles.

In a crystalline solid, the momentum ~p must be replaced by the crystal momentum
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and the velocity of an electron is no longer ~p/m, but is, instead,

~v(p) = ~∇pε(p) (5.82)

We won’t worry about these subtleties for now. In the systems which we will be

considering, the electron density will be very small. Hence, the electrons will be close

to the bottom of the band, where we can approximate:

ε(k) = ε0 +
h̄2k2

2mb

+ . . . (5.83)

where mb is called the band mass. For instance, in the square lattice nearest-neighbor

tight-binding model,

ε(k) = −2t (cos kxa+ cos kya)

≈ −4t+ ta2k2 + . . . (5.84)

Hence,

mb =
h̄2

2ta2
(5.85)

In GaAs, mb ≈ 0.07me. Once we replace the mass of the electron by the band mass,

we can approximate our electrons by free electrons.

Let us, following Hall, place a wire along the x̂ direction in the above magnetic

fields and run a current, jx, through it. In the steady state, dpx/dt = dpy/dt = jy = 0,

we must have Ex = m
ne2τ

jx and

Ey = −B
ne

jx =
−e
|e|

h

e2

Φ/Φ0

N
jx (5.86)

where n and N are the density and number of electrons in the wire, Φ is the magnetic

flux penetrating the wire, and Φ0 = h/e is the flux quantum. Hence, the sign of the

charge carriers can be determined from a measurement of the transverse voltage in

a magnetic field. Furthermore, according to (5.86), the density of charge carriers –
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Figure 5.1: ρxx and ρxy vs. magnetic field, B, in the quantum Hall regime. A
number of integer and fractional plateaus can be clearly seen. This data was taken
at Princeton on a GaAs-AlGaAs heterostructure.

i.e. electrons – can be determined from the slope of the ρxy = Ey/jx vs B. At high

temperatures, this is roughly what is observed.

In the quantum Hall regime, namely at low-temperatures and high magnetic fields,

very different behavior is found in two-dimensional electron systems. ρxy passes

through a series of plateaus, ρxy = 1
ν
h
e2

, where ν is a rational number, at which

ρxx vanishes, as may be seen in Figure 5.1. The quantization is accurate to a few

parts in 108, making this one of the most precise measurements of the fine structure

constant, α = e2

h̄c
, and, in fact, one of the highest precision experiments of any kind.

Some insight into this phenomenon can be gained by considering the quantum

mechanics of a single electron in a magnetic field. Let us suppose that the electron’s

motion is planar and that the magnetic field is perpendicular to the plane. For now,

we will assume that the electron is spin-polarized by the magnetic field and ignore

the spin degree of freedom. The Hamiltonian,

H =
1

2m
(−ih̄∇+ eA)2 (5.87)

takes the form of a harmonic oscillator Hamiltonian in the gauge Ax = −By, Ay = 0.

(Here, and in what follows, I will take e = |e|; the charge of the electron is −e.) If

we write the wavefunction φ(x, y) = eikxx φ(y), then:

Hψ =
[

1

2m
(eB y + h̄kx)

2 +
1

2m
(−ih̄∂y)2

]
φ(y) eikxx (5.88)

The energy levels En = (n+ 1
2
)h̄ωc, called Landau levels, are highly degenerate because

the energy is independent of k. To analyze this degeneracy, let us consider a system

of size Lx × Ly. If we assume periodic boundary conditions, then the allowed kx
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values are 2πn/Lx for integer n. The harmonic oscillator wavefunctions are centered

at y = h̄k/(eB), i.e. they have spacing yn − yn−1 = h/(eBLx). The number of

these which will fit in Ly is eBLxLy/h = BA/Φ0. In other words, there are as many

degenerate states in a Landau level as there are flux quanta.

It is often more convenient to work in symmetric gauge, A = 1
2
B × r Writing

z = x+ iy, we have:

H =
h̄2

m

[
−2

(
∂ − z̄

4`2
0

)(
∂̄ +

z

4`2
0

)
+

1

2`2
0

]
(5.89)

with (unnormalized) energy eigenfunctions:

ψn,m(z, z̄) = zm Lmn (z, z̄)e
− |z|

2

4`2
0 (5.90)

at energies En = (n + 1
2
)h̄ωc, where Lmn (z, z̄) are the Laguerre polynomials and `0 =√

h̄/(eB) is the magnetic length.

Let’s concentrate on the lowest Landau level, n = 0. The wavefunctions in the

lowest Landau level,

ψn=0,m(z, z̄) = zm e
− |z|

2

4`2
0 (5.91)

are analytic functions of z multiplied by a Gaussian factor. The general lowest Landau

level wavefunction can be written:

ψn=0,m(z, z̄) = f(z) e
− |z|

2

4`2
0 (5.92)

The state ψn=0,m is concentrated on a narrow ring about the origin at radius rm =

`0

√
2(m+ 1). Suppose the electron is confined to a disc in the plane of area A. Then

the highest m for which ψn=0,m lies within the disc is given by A = π rmmax , or,

simply, mmax + 1 = Φ/Φ0, where Φ = BA is the total flux. Hence, we see that in the

thermodynamic limit, there are Φ/Φ0 degenerate single-electron states in the lowest

Landau level of a two-dimensional electron system penetrated by a uniform magnetic

flux Φ. The higher Landau levels have the same degeneracy. Higher Landau levels
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can, at a qualitative level, be thought of as copies of the lowest Landau level. The

detailed structure of states in higher Landau levels is different, however.

Let us now imagine that we have not one, but many, electrons and let us ignore

the interactions between these electrons. To completely fill p Landau levels, we need

Ne = p(Φ/Φ0) electrons. Lorentz invariance tells us that if

n = p
e2

h
B (5.93)

then

jx = p
e2

h
Ey (5.94)

i.e.

σxy = p
e2

h
(5.95)

The same result can be found by inverting the semi-classical resistivity matrix, and

substituting this electron number.

Suppose that we fix the chemical potential, µ. As the magnetic field is varied, the

energies of the Landau levels will shift relative to the chemical potential. However,

so long as the chemical potential lies between two Landau levels (see figure 5.2), an

integer number of Landau levels will be filled, and we expect to find the quantized

Hall conductance, (5.95).

These simple considerations neglected two factors which are crucial to the obser-

vation of the quantum Hall effect, namely the effects of impurities and inter-electron

interactions.1 The integer quantum Hall effect occurs in the regime in which impuri-

ties dominate; in the fractional quantum Hall effect, interactions dominate. 2

1We also ignored the effects of the ions on the electrons. The periodic potential due to the lattice
has very little effect at the low densities relevant for the quantum Hall effect, except to replace
the bare electron mass by the band mass. This can be quantitatively important. For instance,
mb ' 0.07me in GaAs.

2The conventional measure of the purity of a quantum Hall device is the zero-field mobility, µ,
which is defined by µ = σ/ne, where σ is the zero-field conductivity. The integer quantum Hall effect
was first observed by von Klitzing, Pepper, and Dorda in Si mosfets with mobility ≈ 104cm2/Vs
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Figure 5.2: (a) The density of states in a pure system. So long as the chemical poten-
tial lies between Landau levels, a quantized conductance is observed. (b) Hypothetical
density of states in a system with impurities. The Landau levels are broadened into
bands and some of the states are localized. The shaded regions denote extended
states. (c) As we mention later, numerical studies indicate that the extended state(s)
occur only at the center of the band.

5.9.1 The Integer Quantum Hall Effect

Let us model the effects of impurities by a random potential in which non-interacting

electrons move. Clearly, such a potential will break the degeneracy of the different

states in a Landau level. More worrisome, still, is the possibility that some of the

states might be localized by the random potential and therefore unable to carry any

current at all. As a result of impurities, the Landau levels are broadened into bands

and some of the states are localized. The possible effects of impurities are summarized

in the hypothetical density of states depicted in Figure 5.2.

Hence, we would be led to naively expect that the Hall conductance is less than e2

h
p

when p Landau levels are filled. In fact, this conclusion, though intuitive, is completely

wrong. In a very instructive calculation (at least from a pedagogical standpoint),

Prange analyzed the exactly solvable model of electrons in the lowest Landau level

interacting with a single δ-function impurity. In this case, a single localized state,

which carries no current, is formed. The current carried by each of the extended states

is increased so as to exactly compensate for the localized state, and the conductance

remains at the quantized value, σxy = e2

h
. This calculation gives an important hint of

the robustness of the quantization, but cannot be easily generalized to the physically

relevant situation in which there is a random distribution of impurities. To understand

while the fractional quantum Hall effect was first observed by Tsui, Störmer, and Gossard in GaAs-
AlGaAs heterostructures with mobility ≈ 105cm2/Vs. Today, the highest quality GaAs-AlGaAs
samples have mobilities of ≈ 107cm2/Vs.
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Figure 5.3: (a) The Corbino annular geometry. (b) Hypothetical distribution of
energy levels as a function of radial distance.

the quantization of the Hall conductance in this more general setting, we will turn to

the beautiful arguments of Laughlin (and their refinement by Halperin), which relate

it to gauge invariance.

Let us consider a two-dimensional electron gas confined to an annulus such that

all of the impurities are confined to a smaller annulus, as shown in Figure 5.3. Since,

as an experimental fact, the quantum Hall effect is independent of the shape of the

sample, we can choose any geometry that we like. This one, the Corbino geometry,

is particularly convenient. States at radius r will have energies similar to to those

depicted in Figure 5.3.

Outside the impurity region, there will simply be a Landau level, with energies

that are pushed up at the edges of the sample by the walls (or a smooth confining

potential). In the impurity region, the Landau level will broaden into a band. Let us

suppose that the chemical potential, µ, is above the lowest Landau level, µ > h̄ωc/2.

Then the only states at the chemical potential are at the inner and outer edges of the

annulus and, possibly, in the impurity region. Let us further assume that the states

at the chemical potential in the impurity region – if there are any – are all localized.

Now, let us slowly thread a time-dependent flux Φ(t) through the center of the

annulus. Locally, the associated vector potential is pure gauge. Hence, localized

states, which do not wind around the annulus, are completely unaffected by the flux.

Only extended states can be affected by the flux.

When an integer number of flux quanta thread the annulus, Φ(t) = pΦ0, the

flux can be gauged away everywhere in the annulus. As a result, the Hamiltonian

in the annulus is gauge equivalent to the zero-flux Hamiltonian. Then, according
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to the adiabatic theorem, the system will be in some eigenstate of the Φ(t) = 0

Hamiltonian. In other words, the single-electron states will be unchanged. The

only possible difference will be in the occupancies of the extended states near the

chemical potential. Localized states are unaffected by the flux; states far from the

chemical potential will be unable to make transitions to unoccupied states because

the excitation energies associated with a slowly-varying flux will be too small. Hence,

the only states that will be affected are the gapless states at the inner and outer edges.

Since, by construction, these states are unaffected by impurities, we know how they

are affected by the flux: each flux quantum removes an electron from the inner edge

and adds an electron to the outer edge. Then,
∫
I dt = e and

∫
V dt =

∫ dΦ
dt

= h/e,

so:

I =
e2

h
V (5.96)

Clearly, the key assumption is that there are no extended states at the chemical

potential in the impurity region. If there were – and there probably are in samples

that are too dirty to exhibit the quantum Hall effect – then the above arguments

break down. Numerical studies indicate that, so long as the strength of the impurity

potential is small compared to h̄ωc, extended states exist only at the center of the

Landau band (see Figure 5.2). Hence, if the chemical potential is above the center of

the band, the conditions of our discussion are satisfied.

The other crucial assumption, emphasized by Halperin, is that there are gapless

states at the edges of the system. In the special setup which we assumed, this was

guaranteed because there were no impurities at the edges. In the integer quantum

Hall effect, these gapless states are a one-dimensional chiral Fermi liquid. Impurities

are not expected to affect this because there can be no backscattering in a totally

chiral system. More general arguments, which we will mention in the context of

the fractional quantum Hall effect, relate the existence of gapless edge excitations to

gauge invariance.



Chapter 5: Electronic Bands 82

One might, at first, be left with the uneasy feeling that these gauge invariance

arguments are somehow too ‘slick.’ To allay these worries, consider the annulus with

a wedge cut out, which is topologically equivalent to a rectangle. In such a case,

some of the Hall current will be carried by the edge states at the two cuts (i.e. the

edges which run radially at fixed azimuthal angle). However, probes which measure

the Hall voltage between the two cuts will effectively couple these two edges leading,

once again, to annular topology.

Laughlin’s argument for exact quantization will apply to the fractional quantum

Hall effect if we can show that the clean system has a gap. Then, we can argue that

for an annular setup similar to the above there are no extended states at the chemical

potential except at the edge. Then, if threading q flux quanta removes p electrons

from the inner edge and adds p to the outer edge, as we would expect at ν = p/q, we

would have σxy = p
q
e2

h
.


