RCV Engines Limited - UK

The Development of a Rotating Cylinder Valve 4-stroke Engine for 2-Wheeler Applications

RCV 4-Stroke Engines for 2-Wheelers Presentation Contents

2-Wheeler Engine Requirements
 The RCV Engine Concept
 RCV 2-Wheeler Engines
 RCV Handheld Engine Concept
 Future Development Plans

2-Wheeler Engine Reguirements

Overview of the Global Market

- Global market exceeds 25 million units with major markets for all capacities, as follows:
 - China 40%
 India 20%
 ASEAN 16%
 EU 10%
 - ◆ USA 5%
- Utility models less than 150cc account for more than 90% production
- 2-stroke engines were popular in utility applications but have been replaced over the last decade by 4strokes with lower exhaust emissions at a cost premium
 - is there an effective 2-stroke replacement ?

Future Legislative Events

Exhaust emissions legislation will continue to drive 2-wheeler engine development

 Future Legislation (CO, HC, NOx)
 EURO3 - new drive cycle with cold start + OBD + durability + anti tampering
 India 2005 – 1.5 g/km CO, – 1.25 g/km HC + NOx

CO2 Legislation

- Legislation not defined will be monitored from 2006 in Europe - reduction required could be 25%?
- Fuel consumption is important for utility motorcycle markets – such as India

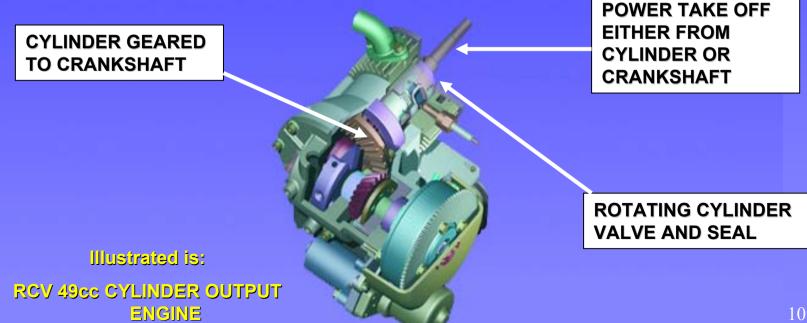
Utility 2-Wheeler Engine Requirements

	Criteria	Requirement
SPECIFICATION	Cost	Lowest manufacturing cost
	Emissions	Achieve legislation at minimum additional cost
	Fuel/oil	Deposit control - service intervals
	Noise	Legislative requirements - good sound quality
	Oil consumption	Low consumption with no leaks
	Power	High power with wide torque band
	Production	Repeatable performance in production
	Reliability requirement	>30,000 km
	Temperature	-10°C to +40°C with easy starting
	Weight	Low weight - for economy and handling
	Abuse	Over-speed and dirt tolerance
FUNCTION	Environment	Extreme and diverse conditions-water and dust
	Maintenance	Good serviceability with simple tools
	Multi product application	Scooter, step-through and motorcycle
	Package	Compact to suit all existing vehicles

The RCV Engine Concept

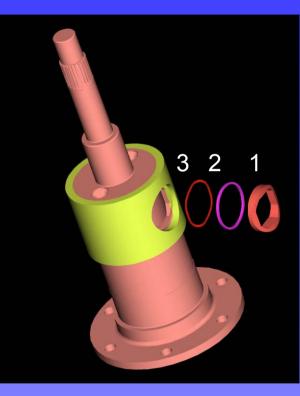
RCV – Introduction

- RCV Engines is a UK based company established in 1997 to commercially exploit the Rotating Cylinder Valve engine concept invented by Keith Lawes
- RCV commenced production with a model aircraft engine, today RCV manufactures a range of methanol fuelled engines from 10cc to 20cc with more than 6,000 engines operating in over 50 countries worldwide
- RCV are currently developing prototype gasoline and JP8 fuelled engines for unmanned air vehicles (UAV), hand held tool and 2wheeler applications



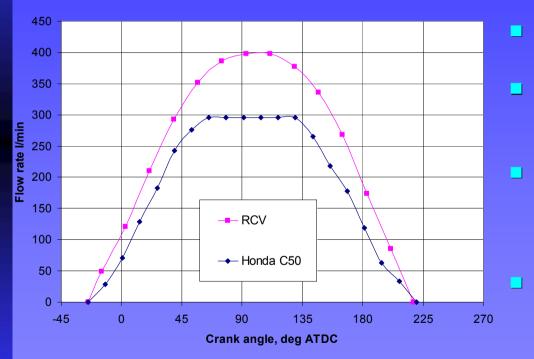
Rotary Valve Engines - Background

- Sleeve and rotary valve engines have been developed since the 1920's for improved mechanical durability, reduced noise and unrestricted engine breathing
- Sleeve valve engines had advantages of:
 - Reduced losses compared to poppet valves
 - Reduced piston friction
 - Improved detonation resistance
- Rotary valve engines by Cross and Aspin showed advantages of improved volumetric efficiency but with problems of high oil consumption and poor valve durability
- GV Technology (SAE 891793) overcame these issues with a rotary valve conversion of the Yamaha XT500 engine which achieved vehicle fuel consumption reductions of 30% with improved torque.
- Non of these sleeve or rotary valve technologies have demonstrated a production or packaging advantage


RCV – the Concept

- Cylinder rotates around piston at half crankshaft speed
- Single port in the rotating cylinder passes fixed radial inlet and exhaust ports to provide the valve function
- The rotating cylinder is effectively combined with the rotary valve in a single component - hence the name RCV
- The RCV concept is simple with compact package and reduced component count compared to a 2-valve 4 stroke

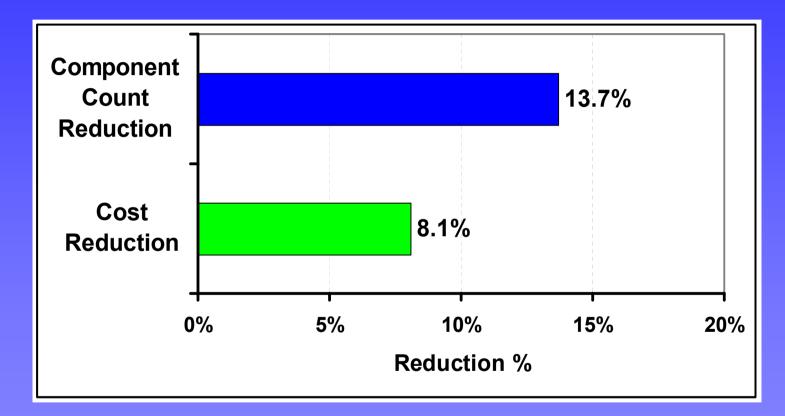
RCV - Valve Seal Design


- RCV have developed a floating seal concept with minimum blow-by, wear and friction. A floating seal can accommodate production tolerance variations and thermal distortions
 - The seal incorporates:
 - 1) Solid compression seal dynamic seal using wave spring and cylinder pressure
 - 2) Piston ring type seal forms seal at rear of compression seal
 - 3) Wave spring provides static sealing force
 - Compression seal based on similar material to piston rings - similar operating environment

RCV 49cc Prototype Engine Valve Seal

RCV 49cc Prototype Engine Valve Flow Performance

Pressure drop v crank angle All flows measured with an input pressure of 72mm H2O



RCV Engines Limited - © 2004

ndia AutoExpo 2004

- Large unrestricted port area (290mm²)
- 50% higher flow area compared to a typical 4 stroke 2 valve engine
 - High flow capacity enables valve overlap to be minimised without sacrificing power
 - Typically torque levels are 85% of max between 3000 and 9000 rpm
 - Still larger areas are possible, up to 400mm²

RCV Crankshaft Output Engine Cost/Component Count

RCV Estimates – based on a bill of materials comparison of a 125cc 4 stroke 2 valve air cooled scooter engine converted to a crankshaft output RCV engine

RCV - Technical Advantages Reduced friction and fuel consumption Rotating cylinder provides continuous piston lubrication Elimination of valve train – net advantage considering seal losses - efficiency benefits particularly at part load Improved volumetric efficiency Unrestricted port with large effective valve area Efficient 4 Stroke combustion system Exhaust emission legislation compliance with conventional 4 stroke motorcycle after-treatment technology Improved Assembly and Maintenance Cylinder height similar to a 2-stroke engine Low component count; simple assembly No cam chain or valve lash clearance to adjust No valve bounce at over-speed operation

RCV 24Wheeler Engines

RCV 2 – Wheeler Engines

RCV have been developing prototype engines for 2-wheelers since 1999
 RCV initially developed a cylinder output 49cc engine for scooter applications
 RCV have overcome several development issues and tested both cylinder output and crankshaft output versions of the 49cc

engine

RCV – Prototype Motorcycle Engines 49cc Prototypes

Series 1 – cylinder output proof of concept
 Series 2 – cylinder output vehicle application

Series 2A – crankshaft output
 4.3 bhp achieved
 Excellent valve durability

RCV - Motorcycle Engines Crankshaft Output Concepts

- Cylinder output versions offer the greatest potential for cost savings – but requires the development of a completely new engine with greater risk for manufacturers
- RCV are focusing on crankshaft output versions for 2-wheelers
 - Retains existing crank-train and transmission
 - Packaging compatible with existing vehicles
 - Cylinder height reduction 40mm for 125cc

RCV - Development Issues

ISSUE	SOLUTION
Blow by	Floating valve seal + repositioned spark plug
Fuel/oil deposits	Direct cylinder oil cooling
Oil consumption	Revised cylinder/crankcase oil distribution
Seal wear	Use of piston ring technology for seal materials
Unstable idle	Revised seal design

RCV 49cc Crankshaft Output Engine Performance

49cc scooter

RPM

7000

8000

9000

10000

6000

TEST VENUE - RICARDO

 Engine performance verified at Ricardo Consulting Engineers

PERFORMANCE

- Max torque
 3.7Nm @ 7000 rpm
- Max power
 4.2bhp @ 8500
- Min BSFC 290 g/kWh

EMISSIONS AT 3%CO

- HC = 13 g/kWh
- NOx = 12 g/kWh

0.50

0.00 +

4000

5000

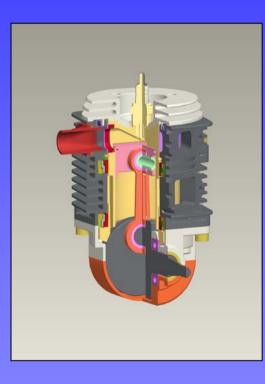
Air-cooled motorcycle engines compared to 2 valve SOHC 4-stroke

	2 Stroke	2 Stroke DI	RCV 4 Stroke
Cost	$\checkmark\checkmark$	XX	\checkmark
Engine size	$\checkmark\checkmark$	0	$\checkmark\checkmark$
Emissions	xx	✓	0
Fuel economy	xx	$\checkmark\checkmark$	$\checkmark\checkmark$
Noise	X	X	\checkmark
Power	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark
Servicing	$\checkmark\checkmark$	xx	\checkmark
Weight	/ /	✓	×

RCV Technology – Status of Development

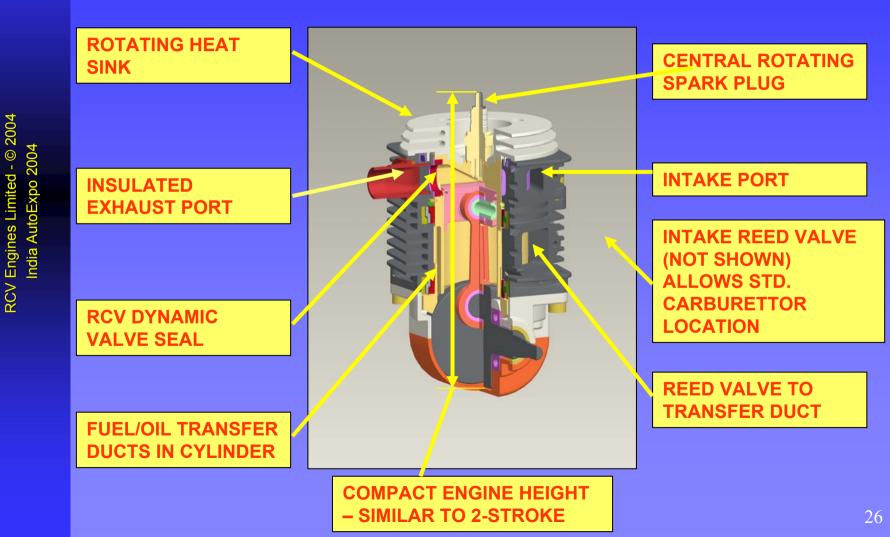
1 Proof of Concept	 Demonstration that the innovation works Technical merits identified Potential solutions for open issues 	
RCV Crank Output Engine		
2 Product Application	 Innovation developed for a product sector All open technical issues closed Technical and commercial status established 	
•		
3 Production Application	 Innovation applied to new product Production processes established Product launch issues resolved 	
2 Stroke DI Technology		
4 Production Proliferation	 Marketing strategy identified Existing product launched in new markets Innovation applied to new products in sector 	

4 Stroke Poppet Valve Engines and 2 Stroke Engines

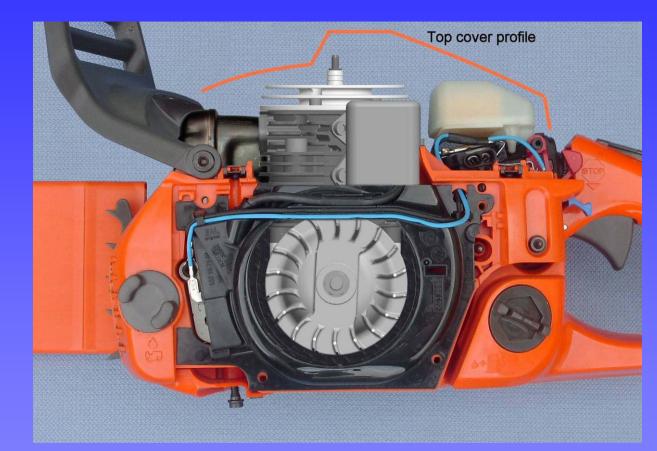

RCV Motorcycle Engine Status

	Criteria	RCV Status
7	Cost	Less components compared to standard 4-strokes
	Emissions	Initial results indicate similar levels to standard 4-stroke - conventional after treatment technology applies
	Fuel/oil	Not an issue on development engines - requires confirmation on vehicle prototype
Õ	Noise	Not an issue with crankshaft output design
SPECIFICATION	Oil consumption	Acceptable oil consumption measured
Ц Н С	Power	Acceptable performance with development potential
L L L	Production	Component value engineering outstanding
0)	Reliability requirement	Durability to be confirmed on vehicle prototypes
	Temperature	Cold starting performance to be confirmed
	Weight	Competitive weight - aluminium cylinder being investigated
	Abuse	Overspeed not an issue
Z	Environment	To be confirmed by testing
FUNCTION	Maintenance	Easy engine to build and disassemble - no valves to adjust
	Multi product application	Possible with crankshaft output concept
	Package	Similar cylinder height to a 2 stroke

RCV Handheld Engine Concept


RCV Handheld Engine Concept

- 4 Stroke cycle EPA Phase 2 emissions potential
- Fuel/mix lubricated allows multiposition operation
- Crankcase supercharged high power to weight ratio
- RCV valve high engine speed potential
- Compact packaging fits in 2 stroke package
- Low maintenance and easy to service



25

RCV Handheld Engine Features

RCV Handheld Engine Concept

RCV handheld engine concept packages into an existing chainsaw layout with carburettor and exhaust positions unchanged

Future Development Plan

RCV – Development Plans 2004

RCV 2-Wheeler Engines

- Proof of concept phase completed
- 125cc motorcycle demonstrator to be built to establish technical and commercial advantages

RCV Handheld Engines

- Proof of concept engine prototype to be built
- Poppet valve 4-stroke technology is unsuitable for chainsaw applications where 2-strokes have emissions issues and catalysts create a fire hazard

Summary

RCV have developed a new 4-stroke engine concept with benefits over current 2-stroke and 4-stroke engine designs

- Application possibilities include: 2-wheeler, forest & garden, industrial, generators, marine, & aero products
- RCV have ongoing development plans aimed at reducing the technology risk for commercial production applications
 - The advantages of RCV technology are:
 - ✓ Low cost
 - ✓ Fuel efficient
 - ✓ High Power

- ✓ Low maintenance
- Protected by international patents
- Compact package

Conclusion

RCV 4-stroke technology has the potential to become an effective 2-stroke replacement with improved fuel efficiency compared to traditional poppet valve 4-strokes