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Abstract

In this paper, the path tracking (PT) control for automatic steering of vehicles is studied. The Takagi–Sugeno (T–S) fuzzy
model of vehicle obtained from a nonlinear model is considered and a fuzzy controller is designed. The stability analysis
is discussed using Lyapunov’s approach combined with the linear matrix inequalities (LMI) approach. Finally, simulation
results are given to demonstrate the controller’s effectiveness.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, fuzzy control has become a popular research in control engineering. The fuzzy logic controller has made
itself available not only in the laboratory work but also in industrial applications[1–11]. In recent years, theoretical
developments of fuzzy control have been proposed, and the constructions and the use of fuzzy controllers have been
explored[12–18,20,22]. These works are essentially based on a fuzzy model of the process[19] and on Lyapunov
stability to design the fuzzy control law.

One important application of fuzzy control is in vehicles: maritime, space and ground vehicles. In[1], Waneck
proposed a fuzzy controller for an autonomous boat without initially having to develop a nonlinear dynamics model
of a vehicle. Sugeno et al.[2,3] has designed a fuzzy controller based on fuzzy modeling of a human operator’s
control actions to navigate and to park a car. Larkin[4] has proposed a fuzzy controller for aircraft flight control
where the fuzzy rules are generated by interrogating an experienced pilot and asking him a number of highly
structured questions. In[5], the authors have designed an autopilot for ships by translating the steering behavior
of a human controller into a fuzzy mathematical model. In[6], a fuzzy control that uses rules on a skilled human
operator’s experience is applied to automatic train operations. Nguyen and Widow[7] have developed a neural
network controller for the truck backer upper to a loading dock problem from an arbitrary initial position by
manipulating the steering. Kong and Kosko[8] have proposed a fuzzy control strategy for the same problem. In[9],
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Wang has solved the same problem by generating fuzzy rules using learning algorithms. However, all the above
studies do not treat the PT problem and have not analyzed the stability of the control systems.

This paper focuses on the design of a stabilizing fuzzy controller for the PT problem of vehicles using its nonlinear
dynamics model. Such a dynamics model has been developed[23,24], and is used by vehicle constructors[25] in
order to simulate the vehicle behavior. The vehicle nonlinear model will be approximated by a set of linear models
interpolated by membership functions (Takagi–Sugeno (T–S) fuzzy model) and then a model-based fuzzy controller
will be developed to stabilize the T–S fuzzy model. Based on the T–S fuzzy model of the vehicle, the outcome
of the fuzzy tracking control problem is parameterized in terms of a linear matrix inequality (LMI) problem. The
LMI problem can be solved very efficiently by convex optimization techniques to complete the fuzzy path tracking
control design for vehicles.

The paper is organized as follows. InSection 2, the vehicle dynamics model is presented, thereafter, a kinematics
model based on mobile target configuration tracking is derived for the PT problem.Section 3is devoted to the
representation of the vehicle model by a T–S fuzzy model and to the fuzzy control design for PT problem using
Lyapunov’s approach combined by the LMIs approach. InSection 4, simulation results are given to highlight the
effectiveness of the proposed control law.Section 5concludes the paper.

2. Problem statement

2.1. Car dynamics model

Generally, the real time application linked to the control of the vehicle use kinematics models or dynamics ones
which take into consideration one or two degrees of freedom, for example lateral displacement and yaw angle
[26]. In order to obtain a good accuracy on the behavior of the vehicle, we propose to use lateral and longitudinal
dynamics. We consider that the vehicle moves on a plane road, dry and without disturbances such as wind, snow
and rain. We do not consider the vertical displacement and pith angle. With these considerations, the final dynamics
model describing the behavior of the vehicle, as introduced in[18,24] is given by
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where(x, y) are the longitudinal and lateral displacement, respectively, in the fixed frameR(0,�i, �j), (u, v) are
longitudinal and lateral velocities, respectively,r the yaw rate andφ the orientation angle of the vehicle. The control
actions of the vehicle are the traction force or the braking forceT and the steering angleδ of the front wheel (see
Fig. 1). Constants of the system are indicated inAppendix A. We remark that this dynamics model is MIMO and
highly nonlinear.

2.2. Path tracking problem

As shown inFig. 1, the target configuration is represented by a reference vehicle with the same kinematics
constraints as the real one.

Let (u, v, φ) and(ur, vr, φr) be, respectively, the longitudinal velocity, lateral velocity, yaw rate of the real and
the reference vehicle.



A. El Hajjaji, S. Bentalba / Robotics and Autonomous Systems 43 (2003) 203–213 205

Fig. 1. Path following representation.

Our objective is to determine the control actionsT andδ allowing the real vehicle to follow a trajectory defined
by reference vehicle. In other words, let(xe, ye) are the coordinates of the position error vector�MMr in the frame
Rl(M,�i, �j) linked to the real vehicle, andφe = φ − φr denote the orientation error between both vehicles. The
position error vector can be written in the mobile frameRl as follows:

�MMr = xe�i + ye�j. (2)

Differentiating (2) with respect to time yields

d �MMr

dt
= ẋe�i + ẏe�j + xeφ̇�j − yeφ̇�i = ue�i + ve�i, (3)

i.e.,

ẋe = ue − yer, ẏe = ve − xer.

Furthermore, we have

d �MMr

dt
= d( �OMr)

dt
− d( �OM)

dt
, (4)

where

d �OMr

dt
= ur cos(φe)�i − ur sin(φe)�i + vr sin(φe)�i + vr cos(φe)�j, (5)

d �OM

dt
= u�i + v�j. (6)

Substituting (3), (5) and (6) into (4), one obtains

ẋe = ur cos(φe) + vr sin(φe) − u + yeφ̇,

ẏe = −ur sin(φe) + vr cos(φe) − v − xeφ̇,
(7)
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i.e.,

u = ur cos(φe) + vr sin(φe) − ue, v = −ur sin(φe) + vr cos(φe) − ve.

Furthermore, fromFig. 1, one has

φ̇e = φ̇ − φ̇r = re = r − rr. (8)

Finally, the state representation for the path tracking problem can be written as follows:

u̇ = vr − fg + fk1 − k2
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(9)

Our control objective is to make the vehicle follow a desired trajectory, that is

u → ur, v → vr, xe → 0, ye → 0, φe → 0.

3. Analysis and design of fuzzy control system

3.1. T–S fuzzy model of vehicle

As in [28], we propose to use T–S fuzzy control for the nonlinear system trajectory tracking problem described
by Eq. (9).

Using this technique, the T–S fuzzy model of a vehicle is easily obtained by linearization near different operation
points(Xei, Uei).

The nonlinear model given in (9) has the following form:

Ẋ = F(X,U, t), (10)

where [F1, . . . , F6] is a six-dimensional vector function of the state vectorX = [u, v, r, xe, ye, φe] and control vector
U = [T, δ]. The functionsFi are continuous and continuously differentiable in their arguments. At the equilibrium

F(Xe, Ue, t) = 0.

After linearization of nonlinear model described inEq. (10)for a specific equilibrium point using Taylor series, we
obtain a T–S fuzzy model with the following form:

Li : if X is ∼ (Xei, Uei), then ˙̄X = AiX̄ + BiŪ,
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The fuzzy ruleLi represents theith linearized system about the operating point(Xei, Uei), where

X̄ = X − Xei, Ū = U − Uei, Ai = ∂F

∂X

∣∣∣∣
(Xei,Uei)

, Bi = ∂F

∂U

∣∣∣∣
(Xei,Uei)

,

Li (i = 1, . . . , n) denotes theith implication.(Ai, Bi) is the ith local model of the fuzzy system. LetWi be the
membership function of the inferred fuzzy set corresponding to the operating regime(Xei, Uei). The final state of
the system is inferred by taking the weighted average of all local models:

˙̄X =
∑n

i=1Wi(AiX̄ + BiŪ)∑n
i=1Wi

. (11)

3.2. Fuzzy controller design

At this stage, we present the used T–S fuzzy controller scheme for nonlinear system trajectory tracking. We
consider a finite number of operating regime(Xei, Uei). In each one, the system is characterized by local linear
models. We suppose that all states in the vectorX = [u, v, r, xe, ye, φe] are measured. For each local model(Ai, Bi),
we design a local state feedback controllers having the following structure:

Ū = −Kf
i (X − Xr), (12)

whereXr is the reference model state andKf
i is any matrix such that(Ai−BiK

f
i ) is Hurwitz. The global controller is

inferred by calculating the weighted average of all local controllers. The membership functions are used as smooth
interpolations.
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The structure of the fuzzy controller is

Ri : if X is(Xei, Uei), thenŪ = −Kf
i X̄.

The final output of fuzzy control is given as

Ū = −
∑n

i=1WiK
f
i X̄∑n

i=1Wi

. (13)

3.3. Stability analysis

It is well known that even if the local controllers stabilize the corresponding local models, the global stability of
the closed loop system is not guaranteed.

Next, we will find a sufficient condition with guaranteeing a global stability. Now the global closed loop fuzzy
system is obtained:

Ẋ =
∑n

i=1
∑n

j=1WiWj[Ai − BiK
f
i ]X∑n

j=1
∑n

i=1WjWi

. (14)

The sufficient conditions for exponential stability of (14) are well known[13–15].

Theorem 1. The equilibrium of fuzzy system(14) is asymptotically stable if there exists a common positive definite
matrix P such that

(Ai − BiK
f
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f
i ) < 0 for i = 1, . . . , n, (15)

GT
ij P + PGij < 0 for i < j < n, (16)
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f
j] + [Aj − BjK

f
i ]).

This theorem reduces to the Lyapunov stability theorem for continuous time linear systems whenn = 1. The
control design problem is to selectKf

i (i = 1, . . . , n) such that conditions (15) and (16) inTheorem 1are satisfied.
To check the stability of the fuzzy control system, it has long been considered difficult to find a common positive

definite matrixP satisfying conditions (15) and (16). In[13], a procedure to construct a commonP is given for
second order fuzzy systems. We pointed out in[14] that the problem of finding a common matrixP can be solved
numerically by convex programming algorithms involving LMIs[21,27]. To do this, a very important observation
is that the stability condition ofTheorem 1is expressed in LMIs[15]. To check the stability, we need to findP
satisfying the LMI conditions

(Ai − BiK
f
i )

TP + P(Ai − BiK
f
i ) < 0 for i = 1,2, . . . , n, GT

ij P + PGij < 0 for i < j < n.

4. Simulation results

For the path tracking maneuver, we choose the operating points which check the following equations:
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Three operating points are chosen:

(ue1, ve1, re1, Te1, δe1) = (20 m/s,0 m/s,0 rad/s,454.33 N,0◦),
(ue2, ve2, re2, Te2, δe2) = (30 m/s,−3.2 m/s,0.8 rad/s,5438.3 N,5◦),
(ue3, ve3, re3, Te3, δe3) = (40 m/s,−8 m/s,1 rad/s,15 975 N,5◦).

We consider the following gains:

Kf
1 =

[
2.8466× 104 −9.5333× 103 5.9163× 104 −2.4935× 105 3.2292× 105 1.0677× 105

−3.0888× 10−3 0.13649 0.087483 −0.087662 −0.88671 6.8637

]
,

Kf
2 =

[
3.6311× 104 3.0077× 104 5.8368× 105 −3.1659× 105 2.9973× 102 3.2963× 106

−1.9610× 10−2 1.3031× 10−1 −2.0189× 10−1 4.4963× 10−2 −8.6899× 10−1 5.3208

]
,

Kf
3 =

[
3.1642× 104 −2.2318× 105 2.4846× 105 −1.9236× 105 1.5170× 106 −8.6682× 106

−1.3971× 10−2 2.8546× 10−1 −1.5647× 10−2 −1.6701× 10−1 −1.8193 1.2974× 101

]
.

Fig. 2gives the membership functions of the longitudinal velocity corresponding to regime(Xei, Uei).
The fuzzy model of the vehicle designed from three rules is stable if

S11 = GT
11P + PG11 < 0, (18)

S22 = GT
22P + PG22 < 0, (19)

S33 = GT
33P + PG33 < 0, (20)

S12 = GT
12P + PG12 < 0, (21)

S13 = GT
13P + PG13 < 0, (22)

Fig. 2. Membership functions.
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Fig. 3. Motion vehicle to the desired trajectory.

Fig. 4. State variable evolution.
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S23 = GT
23P + PG23 < 0 (23)

for a common positive matrixP.
Using the LMI approach, we obtain

P =




2.4559× 10−6 9.4152× 10−7 −1.8604× 10−8 2.6138× 10−7 1.1279× 10−7 3.3387× 10−1

9.4152× 10−7 5.4117× 10−7 3.4499× 10−9 1.1973× 10−7 6.1704× 10−8 −8.5123× 10−10

−1.8604× 10−8 3.4499× 10−9 2.0344× 10−9 −2.0723× 10−9 −3.0940× 10−10 −1.5350× 10−1

2.6138× 10−7 1.1973× 10−7 −2.0723× 10−9 3.5686× 10−8 1.5424× 10−8 2.6756× 10−10

1.1279× 10−7 6.1704× 10−8 −3.0940× 10−10 1.5424× 10−8 7.8649× 10−9 5.0227× 10−11

3.3387× 10−10 −8.5123× 10−10 −1.5350× 10−10 2.6756× 10−10 5.0227× 10−11 3.2539× 10−11




> 0.

It can be easily shown that the stability conditions (18)–(23) are satisfied.
To highlight the effectiveness of the proposed control algorithm, we present the simulation results for a path

tracking problem of the vehicle. One arbitrarily chosen initial state [u0, v0, r0, x0, y0, φ0] = [25 m/s,−0.8 m/s,
0.2 rad/s, 10 m, 5 m, 0.1 rad] and the desired trajectory is defined by (ur = 18.5 m/s, vr = −0.34 m/s,rr =
0.78 rad/s).Fig. 3shows that the vehicle starting from initial state follows the desired trajectory rapidly.Fig. 4shows
the convergence of the lateral velocity, longitudinal velocity, yaw rate variables towards their desired velocity and the
tracking errors of longitudinal displacement, lateral displacement and the orientation between two vehicles. We see
that this fuzzy controller successfully drives the vehicle to the desired trajectory starting from an arbitrary initial state.

5. Conclusion

In this paper, we have presented a T–S fuzzy scheme for trajectory tracking of vehicle dynamics. A nonlinear
behavior of vehicle has been presented by a T–S fuzzy model. Based on this T–S fuzzy model, a fuzzy controller
has been developed. The stability of the closed loop nonlinear systems has been analyzed using Lyapunov’s method
combined with an LMI approach. A simulation result is given to illustrate the designed procedure and tracking
performance of the proposed algorithm.

Appendix A

Symbol Name Value

a (mm) Distance, c.g. to front axle 1050

b (mm) Distance, c.g. to rear axle 1630

h (mm) c.g. height 530

M (kg) Total mass 1480

f Nominal friction coefficient 0.02

Iz (kg m2) Moment of inertia 2350

g (m/s2) Acceleration due to gravity 8.81

Cf (N/rad) Front roll stiffness 135000

Cr (N/rad) Rear roll stiffness 95000

k1 (N/s m) Portance parameter 0.005

k2 (N/s m) Drag parameter 0.41

fb Distribution coefficient, front/rear 0.6
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